Question

23.1 mL of 2.10 M Ba(OH)2 is added to 73.1 mL of 0.813 M H3PO4. What...

23.1 mL of 2.10 M Ba(OH)2 is added to 73.1 mL of 0.813 M H3PO4. What mass of Ba3(PO4)2 (s) is formed from this reaction? Ba3(PO4)2 (s) is from this reaction? Ba3(PO4)2 is barium phosphate and is insoluble in water.

(a) 9.73 g

(b) 35.7 g

(c) 14.6 g

(d) 17.9 g

Homework Answers

Answer #1

The reaction between Ba(OH)2 and H3PO4 is

3Ba(OH)2+2 H3PO4---> Ba3(PO4)2 +6H2O

molar ratio of Ba(OH)2 : H3PO4= 3:2 =1.5:1

moles of Ba(OH)2 in 23.1ml of 2.1M= 2.1*23.1/1000 moles=0.0485 moles

moles of H3PO4 in 73.1ml of 0.813M= 0.813*73.1/1000=0.05943

Molar ratio (actual )= 0.0485: 0.05943 = 1,23 :1

So limiting reactants is Ba(OH)2 since it is required is 1.23 against 1.5

So moles of Ba3(PO4)2 formed is limited by Ba(OH)2 moles which are 0.0485

moles of Ba3(PO4)2 formed= 0.0485/3= 0.0162 moles

molar mas of Ba3(PO4)2= 602

Mass of Ba3(PO4)2 formed =0.0162*602= 9.73 gm ( A is correct)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a constant‑pressure calorimeter, 65.0 mL65.0 mL of 0.320 M Ba(OH)20.320 M Ba(OH)2 was added to...
In a constant‑pressure calorimeter, 65.0 mL65.0 mL of 0.320 M Ba(OH)20.320 M Ba(OH)2 was added to 65.0 mL65.0 mL of 0.640 M HCl.0.640 M HCl. The reaction caused the temperature of the solution to rise from 21.87 ∘C21.87 ∘C to 26.23 ∘C.26.23 ∘C. If the solution has the same density and specific heat as water (1.00 g/mL1.00 g/mL and 4.184J/g⋅°C,)4.184J/g⋅°C,) respectively), what is Δ?ΔH for this reaction (per mole H2OH2O produced)? Assume that the total volume is the sum of...
In a constant-pressure calorimeter, 65.0 mL of 0.340 M Ba(OH)2 was added to 65.0 mL of...
In a constant-pressure calorimeter, 65.0 mL of 0.340 M Ba(OH)2 was added to 65.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 24.38 °C to 29.01 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 60.0 mL of 0.300 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.300 M Ba(OH)2 was added to 60.0 mL of 0.600 M HCl. The reaction caused the temperature of the solution to rise from 21.02 °C to 25.11 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 55.0 mL of 0.330 M Ba(OH)2 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.330 M Ba(OH)2 was added to 55.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 23.64 °C to 28.14 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 22.00 °C to 26.63 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 21.03 °C to 25.66 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.330 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.330 M Ba(OH)2 was added to 70.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 24.17 °C to 28.67 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
A 100 mL solution of 0.200 M Sr(OH)2 is titrated with 0.100 M H3PO4. What is...
A 100 mL solution of 0.200 M Sr(OH)2 is titrated with 0.100 M H3PO4. What is the volume of H3PO4 needed to reach equivalence point? 100 mL 200 mL 50 mL 300 mL 133 mL A 100 mL solution of unknown concentration H2SO4 is titrated with 200 mL of 0.100 M Ba(OH)2 solution to reach equivalence point. What is the concentration of H2SO4 solution? 0.100 M 0.050 M 0.020 M 0.200 M Cannot determine based on the provided information.
1) A student reacts 25.0 mL of 0.225 M NaOH with 25.0 mL of 0.147 M...
1) A student reacts 25.0 mL of 0.225 M NaOH with 25.0 mL of 0.147 M H2SO4. Write a balanced chemical equation to show this reaction. Calculate the concentrations of NaOH and H2SO4 that remain in solution, as well as the concentration of the salt that is formed during the reaction. 2) A student reacts 45.0 mL of 0.198 M Ba(OH)2 with 50.0 mL of 0.102 M H3PO4. Write a balanced chemical equation to show this reaction. Note that the...
4.58 M Ca(OH)2 150.0 mL and 8.24 M H3PO4 60.0 mL were used for neutralization reaction....
4.58 M Ca(OH)2 150.0 mL and 8.24 M H3PO4 60.0 mL were used for neutralization reaction. What type and mass of salt are produced? (However, Ca 40.0 g/mol, P 31.0 g/mol)