Question

. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb calorimeter containing 650...

. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb calorimeter containing 650 grams of water at an initial temperature of 20.00 oC. After the reaction, the final temperature of the water is 26.4ºC. The heat capacity of the calorimeter is 420 J/oC. Using these data, calculate the heat of combustion of naphthalene in kJ/mol.

Homework Answers

Answer #1

Sol.

As Mass of naphthalene , C10H8 = 0.500 g

Molar Mass of C10H8 = 128.1705 g/mol

So , Moles of C10H8 = n

= 0.500 / 128.1705 = 0.0039 mol

Now ,  

Mass of water = m = 650 g

Change in temperature = deltaT

= Final temperature - Initial temperature

= 26.4 - 20.00  

= 6.4 °C

Specific Heat capacity of calorimeter = C = 420 J/°C

Specific Heat capacity of water = Cw = 4.184 J / g°C   

So ,  

Heat of combustion of naphthalene  

= - ( ( m × Cw × deltaT ) + ( C × deltaT ) ) / n

= - ( ( 650 × 4.184 × 6.4 ) + ( 420 × 6.4 ) ) / 0.0039

= - 20093.44 / 0.0039

= - 5152164.102 J / mol

=   - 5152.164 KJ / mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases...
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases from 24.90 °C to 27.80 °C. The calorimeter contains 1.05E3 g of water and the bomb has a heat capacity of 836 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of naphthalene burned (kJ/mol).
A 1.000 g sample of octane (C8H18) is burned in a bomb calorimeter containing 1200 grams...
A 1.000 g sample of octane (C8H18) is burned in a bomb calorimeter containing 1200 grams of water at an initial temperature of 25.00ºC. After the reaction, the final temperature of the water is 33.20ºC. The heat capacity of the calorimeter (also known as the “calorimeter constant”) is 837 J/ºC. The specific heat of water is 4.184 J/g ºC. Calculate the heat of combustion of octane in kJ/mol.
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature...
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature increases from 24.40 °C to 27.57 °C. The calorimeter contains 1.08×103 g of water and the bomb has a heat capacity of 877 J/°C. The heat capacity of water is 4.184 J g-1°C-1. Based on this experiment, calculate ΔE for the combustion reaction per mole of diphenyl phthalate burned. ______ kJ/mol
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases...
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases from 25.30 °C to 27.50 °C. The calorimeter contains 1.03E3 g of water and the bomb has a heat capacity of 856 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of bianthracene burned (kJ/mol).
A 5.00g sample of TNT (C7H5N2O6) is burned in a bomb calorimeter with a heat capacity...
A 5.00g sample of TNT (C7H5N2O6) is burned in a bomb calorimeter with a heat capacity of 420 J/ºC. The calorimeter contained 610 grams of water (4.18J/gºC) and the temperature of the water was measured to go from 20.0 ºC to 22.5 ºC. What is the heat of combustion of TNT? (1) -79.10 kJ/mol (2) -158.2 kJ/mol (3) -258.2 kJ/mol (4) -316.5 kJ/mol (5) -632.9 kJ/mol
A 1.00g sample of the rocket fuel hydrazine N2H4 is burned in a bomb calorimeter containing...
A 1.00g sample of the rocket fuel hydrazine N2H4 is burned in a bomb calorimeter containing 12.00g of water. The temperature of the water and bomb calorimeter rises from 24.62 degrees Celsius to 28.16 degrees Celsius. Assuming the heat capacity of the empty bomb calorimeter is 837J/degrees Celsius, calculate the heat of combustion of 1 mol of hydrazine in the bomb calorimeter. (The specific heat capacity of water is 4.184 J/g*degree Celsius .
When 1.020 g of ethanol (C2H6O, 46.07 g/mol) was burned in a bomb calorimeter containing 2400....
When 1.020 g of ethanol (C2H6O, 46.07 g/mol) was burned in a bomb calorimeter containing 2400. g of water, the temperature of the water rose from 22.46 to 25.52ºC.   The specific heat of water is 4.18 J/g-°C. What is the enthalpy of combustion of 1 mol of ethanol? What is the heat capacity of the calorimeter?
Find ΔErxn for the combustion of C10H8 in kJ/mol. The heat capacity of the bomb calorimeter,...
Find ΔErxn for the combustion of C10H8 in kJ/mol. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 4.947 kJ/∘C . When 1.318 g of C10H8 undergoes combustion in a bomb calorimeter, the temperature rises from 26.04 ∘C to 49.29 ∘C.
1. 3.000 grams of Ca is burned in a bomb calorimeter. The water’s temperature rose from...
1. 3.000 grams of Ca is burned in a bomb calorimeter. The water’s temperature rose from 20.0 degrees centigrade to 21.79 degrees centigrade. The heat capacity of the calorimeter is 26.60 kJ/C. What is the enthalpy change for this reaction as written. The thermochemical equation is: 2Ca (s) + O2 (g) —> 2CaO (s) 2. 1.30 grams of C7H6O2 is combusted in a bomb calorimeter. The water’s temperature rose from 20.00 degrees centigrade to 21.58 degrees centigrade. The heat capacity...
A 2.50 mol sample of benzene (C6H6, 78.11 g/mol) was burned in a bomb calorimeter with...
A 2.50 mol sample of benzene (C6H6, 78.11 g/mol) was burned in a bomb calorimeter with a heat capacity of 800 J/°C. The calorimeter contained 100g of water (4.18J/g°C) and the temperature increased by 4°C. What is the molar enthalpy of combustion for this compound?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT