Question

Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)    Δ?1=−840.0 kJ HCl(g)⟶HCl(aq)  Δ?2=−74.8 kJHCl(g)⟶HCl(aq)  ΔH2=−74.8 kJ...

Consider these reactions, where M represents a generic metal.

2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)    Δ?1=−840.0 kJ

HCl(g)⟶HCl(aq)  Δ?2=−74.8 kJHCl(g)⟶HCl(aq)  ΔH2=−74.8 kJ

H2(g)+Cl2(g)⟶2HCl(g) Δ?3=−1845.0 kJH2(g)+Cl2(g)⟶2HCl(g) ΔH3=−1845.0 kJ

MCl3(s)⟶MCl3(aq)  Δ?4=−152.0 kJMCl3(s)⟶MCl3(aq)  ΔH4=−152.0 kJ

Use the given information to determine the enthalpy of the reaction

2M(s)+3Cl2(g)⟶2MCl3(s)2M(s)+3Cl2(g)⟶2MCl3(s)

Δ?=____kJ

Homework Answers

Answer #1

Lets number the reaction as 1, 2, 3, 4, 5 from top to bottom

required reaction should be written in terms of other reaction

This is Hess Law

required reaction can be written as:

reaction 5 = +1 * (reaction 1) +6 * (reaction 2) +3 * (reaction 3) -2 * (reaction 4)

So, ΔHo rxn for required reaction will be:

ΔHo rxn = +1 * ΔHo rxn(reaction 1) +6 * ΔHo rxn(reaction 2) +3 * ΔHo rxn(reaction 3) -2 * ΔHo rxn(reaction 4)

= +1 * (-840.0) +6 * (-74.8) +3 * (-1845.0) -2 * (-152.0)

= -6519.8 KJ

Answer: -6519.8 KJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)ΔH1=−819.0 kJ2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)ΔH1=−819.0 kJ HCl(g)⟶HCl(aq)  ΔH2=−74.8 kJHCl(g)⟶HCl(aq)  ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g)...
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)ΔH1=−819.0 kJ2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)ΔH1=−819.0 kJ HCl(g)⟶HCl(aq)  ΔH2=−74.8 kJHCl(g)⟶HCl(aq)  ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) ΔH3=−1845.0 kJH2(g)+Cl2(g)⟶2HCl(g) ΔH3=−1845.0 kJ MCl3(s)⟶MCl3(aq)  ΔH4=−258.0 kJMCl3(s)⟶MCl3(aq)  ΔH4=−258.0 kJ Use the given information to determine the enthalpy of the reaction 2M(s)+3Cl2(g)⟶2MCl3(s)
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g) ΔH1=−864.0 kJ HCl(g)⟶HCl(aq) ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g)...
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g) ΔH1=−864.0 kJ HCl(g)⟶HCl(aq) ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) ΔH3=−1845.0 kJ MCl3(s)⟶MCl3(aq) ΔH4=−440.0 kJ Use the given information to determine the enthalpy of the reaction 2M(s)+3Cl2(g)⟶2MCl3(s) ΔH= ? kJ
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)Δ?1=−579.0 kJ HCl(g)⟶HCl(aq) Δ?2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) Δ?3=−1845.0...
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)Δ?1=−579.0 kJ HCl(g)⟶HCl(aq) Δ?2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) Δ?3=−1845.0 kJ MCl3(s)⟶MCl3(aq) Δ?4=−138.0 kJ Use the given information to determine the enthalpy of the reaction 2M(s)+3Cl2(g)⟶2MCl3(s)
Consider the following reaction carried out under constant pressure 6HCl(aq) + 2Al(s) → 3H2(g) + 2AlCl3(s)...
Consider the following reaction carried out under constant pressure 6HCl(aq) + 2Al(s) → 3H2(g) + 2AlCl3(s) Δ Hrxn = -4.04×102 kJ Calculate the heat associated with the complete reaction of 4.38×102 g of HCl with 67.0 g of Al. Show all work. A.-4.85×103 kJ B.-3.96×102 kJ C.-8.08×102 kJ D.-5.01×102 kJ E.-1.00×103 kJ
Aluminum chloride can be formed from its elements: (i) 2Al(s)+3Cl2(g) ⟶ 2AlCl3(s) ΔH°= ? Use the...
Aluminum chloride can be formed from its elements: (i) 2Al(s)+3Cl2(g) ⟶ 2AlCl3(s) ΔH°= ? Use the reactions here to determine the ΔH° for reaction(i): (ii) HCl(g) ⟶ HCl(aq) ΔH(ii) ° =−74.8kJ (iii) H2(g)+Cl2(g) ⟶ 2HCl(g) ΔH(iii) ° =−185kJ (iv) AlCl3(aq) ⟶ AlCl3(s) ΔH(iv) ° =+323kJ/mol (v) 2Al(s)+6HCl(aq) ⟶ 2AlCl3(aq)+3H2(g) ΔH(v) ° =−1049kJ Textbook says answer is −1407 kJ I keep getting -1049 kJ - 555 kJ + 646 kJ = -958 kJ. Please help! Is there a difference when kJ/mol...
For the reaction H2(g) + Cl2(g) 2 HCl(g) G° = -189.8 kJ and S° = 20.0...
For the reaction H2(g) + Cl2(g) 2 HCl(g) G° = -189.8 kJ and S° = 20.0 J/K at 262 K and 1 atm. This reaction is (reactant, product) favored under standard conditions at 262 K. The standard enthalpy change for the reaction of 2.46 moles of H2(g) at this temperature would be kJ.
1. Consider the following reaction: 2Al(s) + 6HCl(aq) > 2AlCl3(aq) +3H2(g) A 1.0792-g piece of aluminum...
1. Consider the following reaction: 2Al(s) + 6HCl(aq) > 2AlCl3(aq) +3H2(g) A 1.0792-g piece of aluminum reacted completely in 20.0 s. The rate of formation of hydrogen gas is: A) 6.05 * 10-3 g/s B) 2.00 * 10-3 g/s C) 1.56 * 10-3 g/s D) 3.15 * 10-3 g/s
When 0.109 g of Zn(s) combines with enough HCl to make 55.7 mL of HCl(aq) in...
When 0.109 g of Zn(s) combines with enough HCl to make 55.7 mL of HCl(aq) in a coffee cup calorimeter, all of the zinc reacts, which increases the temperature of the HCl solution from 23.2 °C to 24.8 °C: Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g) Calculate the enthalpy change of the reaction ΔHrxn in J/mol. Insert your answer in kJ, but do not write kJ after the number. (Assume the density of the solution is 1.00 g/mL and the...
When 0.113 g of Zn(s) combines with enough HCl to make 53.6 mL of HCl(aq) in...
When 0.113 g of Zn(s) combines with enough HCl to make 53.6 mL of HCl(aq) in a coffee cup calorimeter, all of the zinc reacts, which increases the temperature of the HCl solution from 23.3 °C to 24.7 °C: Zn(s) + 2HCl(aq) → ZnCl2​(aq) + H2​(g) Calculate the enthalpy change of the reaction ΔHrxn​ in J/mol. Insert your answer in kJ, but do not write kJ after the number. (Assume the density of the solution is 1.00 g/mL and the...
Consider the reaction shown below, where M represents a generic metal. The standard free energy change...
Consider the reaction shown below, where M represents a generic metal. The standard free energy change (ΔG°) for this reaction is –533 kJ. What is the standard reduction potential of M? Is M2+ a stronger or weaker oxidizing agent than Al3+? 2Al(s) +3M2+(aq) → 2Al3+(aq) + 3M(s)