Question

9. Use the following experimentally derived combustion data to calculate the standard molar enthalpy of formation...

9. Use the following experimentally derived combustion data to calculate the standard molar enthalpy of formation (ΔH°f ) of liquid methanol (CH3OH) from its elements.

2 CH3OH(l) + 3 O2(g) → 2 CO2(g) + 4 H2O(l)     ΔH°rxn = −1452.8 kJ

C(graphite) + O2(g) → CO2(g)                               ΔH°rxn = −393.5 kJ

2 H2(g) + O2(g) → 2 H2O(l)                                     Δrxn = −571.6 kJ

(1) −238.7 kJ/mol    (2) 487.7 kJ/mol       (3) −548.3 kJ/mol    (4) 20.1 kJ/mol         (5) 47.1 kJ/mol

Homework Answers

Answer #1

we need

CH3OH --> C(s) + 2H2(g) + 1/2O2(g) = CH3OH(l)

then:

get rxn 2 as it is

C(s) + O2(g) = CO2(g) H = -393.5

we need; 2H2 mol so add rxn 2

2H2(g) + O2(g) C(s) + O2(g) = CO2(g) + 2H2O(l) H = -393.5 + -571.6= -965.1

2H2(g) + C(s) + 2O2(g) = CO2(g) + 2H2O(l) H = -965.1

divide rxn 1 by 2 and invert it

CO2(g) + 2H2O(l) = CH3OH + 3/2O2(g) H = -1/2*(-1452.8) =726.4

add all

CO2(g) + 2H2O(l) + 2H2(g) + C(s) + 2O2(g) = CO2(g) + 2H2O(l) + CH3OH + 3/2O2(g) H = -965.1+726.4 = -238.7

simplify

2H2(g) + C(s) + 1/2O2(g) =CH3OH(l) H = -238.7 kJ/mol

choose option (1)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Methanol (CH3OH) has been proposed as an alternative fuel. Calculate the standard enthalpy of combustion per...
Methanol (CH3OH) has been proposed as an alternative fuel. Calculate the standard enthalpy of combustion per gram of liquid methanol. Standard Heats of Formation: CH3OH(l) = –239 kJ/mol O2(g) = 0 kJ/mol CO2(g) = –393.5 kJ/mol H2O(l) = –286 kJ/mol ΔH =_______ kJ/g CH3OH
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold...
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold below given the following chemical steps and their respective enthalpy changes. Show ALL work! 2 C(s) + H2(g) → C2H2(g) ΔH°rxn = ? 1. C2H2(g) + 5/2 O2(g) → 2CO2 (g) + H2O (l) ΔH°rxn = -1299.6 kJ 2. C(s) + O2(g) → CO2 (g) ΔH°rxn = -393.5 kJ 3. H2(g) + ½ O2(g) → H2O (l) ΔH°rxn = -285.8 kJ
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance   ΔH∘f (kJ/mol) NO(g)   90.2 O2(g)   0 NO2(g)   33.2 Then the standard heat...
The standard molar enthalpy of formation for gaseous H2O is −241.8 kJ/mol. What is the standard...
The standard molar enthalpy of formation for gaseous H2O is −241.8 kJ/mol. What is the standard molar enthalpy of formation for liquid hydrazine (N2H4)?      N2H4(l) + O2(g) → N2(g) + 2H2O(g)      ΔH° = ‒534.2 kJ    ‒292 kJ/mol     292 kJ/mol     ‒146 kJ/mol 50.6 kJ/mol ‒50.6 kJ/mol
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the heat of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the standard heat...
The standard enthalpy change for the combustion of 1 mole of ethylene is -1303.1 kJ C2H4(g)...
The standard enthalpy change for the combustion of 1 mole of ethylene is -1303.1 kJ C2H4(g) + 3 O2(g) ----> 2 CO2(g) + 2 H2O Calculate the change of Hf for ethylene based on the following standard molar enthalpies of formation. molecules Change in Hf (kJ/mol) CO2 -393.5 H2O -241.8
Calculate the standard enthalpy of reaction for 2 C(graphite) + 3 H2(g) C2H6(g) Given the following...
Calculate the standard enthalpy of reaction for 2 C(graphite) + 3 H2(g) C2H6(g) Given the following standard enthalpy of combustion data, ∆H˚comb (C(graphite) = –393.5 kJ·mol–1 H2(g) + ½ O2(g) H2O(l) ∆H˚rxn = –285.8 kJ·mol–1 2 C2H6(g) + 7 O2(g) 4 CO2(g) + 6 H2O(l) ∆H˚rxn = –3119.6 kJ·mol–1 (a) –84.6 kJ·mol–1 (b) 2440.2 kJ·mol–1 (c) –3799.0 kJ·mol–1 (d) –224.5 kJ·mol–1(e) not enough information provided
Use the data below to determine the standard molar enthalpy of formation of B2H6 (g). 4B(s)...
Use the data below to determine the standard molar enthalpy of formation of B2H6 (g). 4B(s) + 3 O2(g) --> 2 B2O3................................deltaHrxn= -2543.9 kj/mol H2(g) + 1/2 O2(g) --> H2O(g).............................deltaHrxn= -241.8 kj/mol B2H6(g) + O2(g) --> B2O3(s) + 3 H2O(g)..........deltaHrxn= -2032.9kj/mol
1.) Using enthalpies of formation, calculate the standard change in enthalpy for the thermite reaction. The...
1.) Using enthalpies of formation, calculate the standard change in enthalpy for the thermite reaction. The enthalpy of formation of Fe3O4 is −1117 kJ/mol. 8 Al(s) + 3 Fe3O4(s) → 4 Al2O3(s) + 9 Fe(s) 2. a) Nitroglycerin is a powerful explosive, giving four different gases when detonated. 2 C3H5(NO3)3(l) → 3 N2(g) + 1/2 O2 (g) + 6 CO2(g) + 5 H2O(g) Given that the enthalpy of formation of nitroglycerin, ΔHf°, is −364 kJ/mol, calculate the energy (heat at...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT