Question

Consider the gas-phase hydration of hexafluoroacetone, (CF3)2CO: (CF3)2CO(g)+H2O(g)⇌krkf(CF3)2C(OH)2(g) At 76 ∘C, the forward and reverse rate...

Consider the gas-phase hydration of hexafluoroacetone, (CF3)2CO:
(CF3)2CO(g)+H2O(g)⇌krkf(CF3)2C(OH)2(g)
At 76 ∘C, the forward and reverse rate constants are kf=0.13M−1s−1 and kr=6.2×10−4s−1.

Part A

What is the value of the equilibrium constant Kc?

Homework Answers

Answer #1

equilibrium constant = forward rate constant/ reverse rate constant

                          K    = Kf/Kr

                         K    = 0.13/(6.2*10^-4)

                         K = 2.096*10^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
CO (g) + Cl2 (g) <--> COCl (g) + Cl (g) Rate constant for the forward...
CO (g) + Cl2 (g) <--> COCl (g) + Cl (g) Rate constant for the forward reaction (kf) = 1.38 x 10^-28 M/sec. Rate constant for the reverse reaction (kr) = 9.3 x 10^10 M/sec Reaction was run at 25 degrees celsius 1) Calc equilibirum constant's value (kc) 2) What would be the kc value for 2Cl(g) + 2COCl (g) --> <-- 2Cl2 (g) + 2CO (g) 3) In which direction is this reaction favored?
please answear each question 1)At equilibrium, ________. a)the rates of the forward and reverse reactions are...
please answear each question 1)At equilibrium, ________. a)the rates of the forward and reverse reactions are equal b)the value of the equilibrium constant is 1 c)all chemical reactions have ceased d)the rate constants of the forward and reverse reactions are equal e)the limiting reagent has been consumed 2)The equilibrium-constant expression depends on the ________ of the reaction. a) stoichiometry b) mechanism c) the quantities of reactants and products initially present d) temperature e) stoichiometry and mechanism 3)Given the following reaction...
1) Consider the following reaction where Kc = 7.00×10-5 at 673 K. NH4I(s) --> NH3(g) +...
1) Consider the following reaction where Kc = 7.00×10-5 at 673 K. NH4I(s) --> NH3(g) + HI(g) A reaction mixture was found to contain 5.62×10-2 moles of NH4I(s), 1.12×10-2 moles of NH3(g), and 8.37×10-3 moles of HI(g), in a 1.00 liter container. Is the reaction at equilibrium? If not, what direction must it run in order to reach equilibrium? The reaction quotient, Qc, equals (???????) The reaction ????? A. must run in the forward direction to reach equilibrium. B. must...
In a study of the gas phase decomposition of hydrogen peroxide at 400 °C H2O2(g)H2O(g) +...
In a study of the gas phase decomposition of hydrogen peroxide at 400 °C H2O2(g)H2O(g) + ½ O2(g) the following data were obtained: [H2O2], M 0.133 6.65×10-2 3.33×10-2 1.67×10-2 seconds 0 16.1 48.2 112 Hint: It is not necessary to graph these data. (1) The observed half life for this reaction when the starting concentration is 0.133 M is s and when the starting concentration is 6.65×10-2 M is s. (2) The average (1/[H2O2]) / t from t = 0...
Thermodynamics: Consider the equilibrium reaction A(g) + B(g) -><- C(g)+D(g). At T=298 K, the standard enthalpies...
Thermodynamics: Consider the equilibrium reaction A(g) + B(g) -><- C(g)+D(g). At T=298 K, the standard enthalpies of formation of the components in the gas phase are -20, -40, -30, and -10 kJ/mol for A,B,C, and D, respectively. The standard-state entropies of the components in the gas phase are 30, 50, 50, and 80 J/(mol K), in the same order. The vapor pressure of liquid C at this temperature is 0.1 bar, while all other components are volatile gases with Henry's...
1.         Write equilibrium (mass action) expressions for each of the following reactions: (a) H2(g) + I2(g)          2 HI...
1.         Write equilibrium (mass action) expressions for each of the following reactions: (a) H2(g) + I2(g)          2 HI (b)2 NO(g) + O2(g)           2 NO2(g) (c)N2(g) + 3 H2(g)           2 NH3(g) (d) CO(g) + NO2(g)           CO2(g) + NO(g) (e) 2 CO(g) + O2(g)             2 CO2(g) 2.    Write equilibrium expressions for each of the following equilibria: (a) 2 C(s) + O2(g)                  CO(g) (b) Zn2+(aq) + H2S(g)               ZnS(s) + 2 H+(aq) (c) HCl(g) + H2O()                  H3O+(aq) + Cl–(aq) (d)H2(g) +  O2(g)                   H2O(g) 3.         Which of the following is more likely to precipitate the hydroxide ion? (a)...
Consider the gas-phase reaction between nitric oxide and bromine at 273 ∘C 2NO(g)+Br2(g)→2NOBr(g). The following data...
Consider the gas-phase reaction between nitric oxide and bromine at 273 ∘C 2NO(g)+Br2(g)→2NOBr(g). The following data for the initial rate of appearance of NOBr were obtained: Experiment [NO](M) [Br2](M) Initial Rate of Appearance ofNOBr(M/s) 1 0.10 0.20 24 2 0.25 0.20 150 3 0.10 0.50 60 4 0.35 0.50 735 Part D What is the rate of disappearance of Br2 when [NO]= 7.6×10−2 M and [Br2]=0.21 M ? Please help with part d!
14.37 Consider the gas-phase reaction between nitric oxide and bromine at 273 ∘C 2NO(g)+Br2(g)→2NOBr(g). The following...
14.37 Consider the gas-phase reaction between nitric oxide and bromine at 273 ∘C 2NO(g)+Br2(g)→2NOBr(g). The following data for the initial rate of appearance of NOBr were obtained: Experiment [NO](M) [Br2](M) Initial Rate of Appearance ofNOBr(M/s) 1 0.10 0.20 24 2 0.25 0.20 150 3 0.10 0.50 60 4 0.35 0.50 735 Part A Determine the rate law. Determine the rate law. a. rate=k[NO]2[Br2] b. rate=k[NO][Br2] c. rate=k[NO]2[Br2]2 d. rate=k[NO][Br2]2 Part B Calculate the average value of the rate constant for...
Problem 2: Fogler 6-6 (a-g), pg. 363 Consider the following system of gas-phase reactions: A X...
Problem 2: Fogler 6-6 (a-g), pg. 363 Consider the following system of gas-phase reactions: A X ??? 1/2 X A 1 r kC = 3 1/2 1 k = ? 0.004 (mol/dm ) min A B ??? B A 2 r kC = 1 2 k 0.3 min? = A ???Y 2 Y A 3 r kC = 3 3 k = ? 0.25 dm /mol min B is the desired product, and X and Y are foul pollutants that...