Question

Assume at exactly 100.0°C and 1.00 atm total pressure, 1.00 mole of liquid water and 1.00...

Assume at exactly 100.0°C and 1.00 atm total pressure, 1.00 mole of liquid water and 1.00 mole of water vapor occupy 18.80 mL and 30.62 L, respectively. 1)Calculate the work done on or by the system when 3.65 mol of liquid H2O vaporizes. 2.)Calculate the water's change in internal energy

Homework Answers

Answer #1

1) workdonw(w) = - PDV

p = 1 atm

DV = 30.62*3.65 = 111.763 L

w = -1*111.763

   = -111.763 l.atm     (1 l.atm = 101.3 joule)

   = -111.763*101.3

   = -11.32 kj

q = heat supplied = n*DHvap

       = 3.65*40.7

       = 148.555 kj

form first law of thermodynamics

change in internal energy(DU) = q+w

     = 148.555-11.32

     = 137.235 kj

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The vaporization of 1 mole of liquid water (the system) at 100.9 degrees C, 1.00 atm,...
The vaporization of 1 mole of liquid water (the system) at 100.9 degrees C, 1.00 atm, is endothermic. H2O(l) + 40.7kJ ---> H2O (g) Assume at exactly 100.0 degrees C and 1.00 atm total pressure, 1.00 mole of liquid water and 1.00 mole of water vapor occupy 18.80 mL and 30.62 L, respectively. 1. Calculate the work done on or by the system when 3.65 mol of liquid H2O vaporizes. Answer in J 2. Calculate the water's change in internal...
The vaporization of 1 mole of liquid water (the system) at 100.9°C, 1.00 atm, is endothermic....
The vaporization of 1 mole of liquid water (the system) at 100.9°C, 1.00 atm, is endothermic. $$ Assume that at exactly 100.0°C and 1.00 atm total pressure, 1.00 mole of liquid water and 1.00 mole of water vapor occupy 18.80 mL and 30.62 L, respectively. Calculate the work done on or by the system when 4.65 mol of liquid H2O vaporizes.
The vapor pressure of pure liquid water is p*(H2O) = 0.02308 atm. Above an aqueous solution...
The vapor pressure of pure liquid water is p*(H2O) = 0.02308 atm. Above an aqueous solution with 122 g of a non-volatile solute (molar mass 241 g/mol) in 920 g H2O has a vapor pressure of 0.02239 atm. Calculate the activity and the activity coefficient of water in the solution.
Liquid Halothane has a density of 1.87 g/mL, and boils at 50.2 degrees celsius and 1.00...
Liquid Halothane has a density of 1.87 g/mL, and boils at 50.2 degrees celsius and 1.00 atm. A) If Halothane behaved as an ideal gas, what volume would 10.0 mL of Halothane occupy at 60 degrees celsius and 1.00 atm of pressure? (In Liters) B) What is the density in g/L of Halothane vapor at 55 degrees celsius and 1.00 atm of pressure?
1) At standard temperature and pressure (0 ∘C and 1.00 atm ), 1.00 mol of an...
1) At standard temperature and pressure (0 ∘C and 1.00 atm ), 1.00 mol of an ideal gas occupies a volume of 22.4 L. What volume would the same amount of gas occupy at the same pressure and 45 ∘C ? Express your answer with the appropriate units. 2) One mole of an ideal gas is sealed in a 22.4-L container at a pressure of 1 atm and a temperature of 273 K. The temperature is then increased to 304...
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition...
Using Raoult's law for water and Henry's law for nitrogen, calculate the pressure and gas-phase composition (mole fractions) in a system containing a liquid that is 1.200 mole% N2 and 98.80 mole% water in equilibrium with nitrogen gas and water vapor at 50.0°C. The Henry's law constant for nitrogen in water is recommended by NIST to be well represented by kH = 0.000625 exp[1300 (1/T – 1/298.15)] mol N2 / (kg H2O bar), where T is measured in Kelvin a)...
If 1.00 mL of water is placed in a 5.00 L closed flask at 26°C, what...
If 1.00 mL of water is placed in a 5.00 L closed flask at 26°C, what volume of water would remain as liquid after equilibrium is allowed to establish between the liquid water and the water vapor in the flask ? (The vapor pressure of water at 26°C is 25.2 torr, and the density of water at 26°C is 1.00 g/mL.)
1- The normal Boiling Point of liquid benzene is 80.1 oC, with 31.0 kJ/mol of ΔHvap...
1- The normal Boiling Point of liquid benzene is 80.1 oC, with 31.0 kJ/mol of ΔHvap at that temperature. The molar heat capacities of the liquid and the gaseous benzene are given as [Cp(l) = 33.44 + 0.334 T] and [Cp(g) = 10.28 + 0.252 T] respectively. i- Calculate ΔH, ΔS and ΔG when 1 mole of liquid benzene is converted to 1 mole of gaseous benzene at 1.00 atm and 80.1 oC. (10 pts) ii- Calculate the work done...
The production of hydrogen chloride gas (HCl) at 1.0 atm and 25°C is represented by the...
The production of hydrogen chloride gas (HCl) at 1.0 atm and 25°C is represented by the following thermochemical equation. H2(g) + Cl2(g) → 2 HCl(g);     ΔH = −184.6 kJ Suppose exactly 4 mol H2(g) reacts with exactly 4 mol Cl2(g) to form HCl(g) under the same conditions of temperature and pressure. (a) Calculate the amount of pressure-volume work that is done. kJ (b) Calculate the change in internal energy (ΔE) of the system, assuming the reaction proceeds to completion. kJ
Pure NOCl gas was heated at 240°C in a 1.00−L container. At equilibrium the total pressure...
Pure NOCl gas was heated at 240°C in a 1.00−L container. At equilibrium the total pressure was 1.00 atm and the NOCl pressure was 0.64 atm. 2NOCl(g) ⇆ 2NO(g) + Cl2(g) (a) Calculate the partial pressure of NO and Cl2 in the system. b) Calculate the equilibrium constant KP.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT