Question

A 0.245 L flask contains 0.467 mol CO2 at 159 °C. Calculate the pressure: a) Using...

A 0.245 L flask contains 0.467 mol CO2 at 159 °C. Calculate the pressure:
a) Using the ideal gas law
b) using the van der Waals equation
c) Explain the reason for the difference
d) Identify which correction (that for P or V) is dominant and why

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
#25 A 10.86 mol sample of krypton gas is maintained in a 0.7529 L container at...
#25 A 10.86 mol sample of krypton gas is maintained in a 0.7529 L container at 296.3 K. What is the pressure in atm calculated using the van der Waals' equation for Kr gas under these conditions? For Kr, a = 2.318L2atm/mol2 and b = 3.978×10-2 L/mol. ____atm According to the ideal gas law, a 1.077 mol sample of methane gas in a 1.670 L container at 265.4 K should exert a pressure of 14.05 atm. By what percent does...
If 1.00 mol of argon is placed in a 0.500-L container at 30.0 ∘C , what...
If 1.00 mol of argon is placed in a 0.500-L container at 30.0 ∘C , what is the difference between the ideal pressure (as predicted by the ideal gas law) and the real pressure (as predicted by the van der Waals equation)? For argon, a=1.345(L2⋅atm)/mol2 and b=0.03219L/mol.
If 1.00 mol of argon is placed in a 0.500-L container at 29.0 ∘C , what...
If 1.00 mol of argon is placed in a 0.500-L container at 29.0 ∘C , what is the difference between the ideal pressure (as predicted by the ideal gas law) and the real pressure (as predicted by the van der Waals equation)? For argon, a=1.345(L2⋅atm)/mol2 and b=0.03219L/mol.
1. Part A A 3.00-L flask is filled with gaseous ammonia, NH3. The gas pressure measured...
1. Part A A 3.00-L flask is filled with gaseous ammonia, NH3. The gas pressure measured at 24.0 ∘C is 1.75 atm . Assuming ideal gas behavior, how many grams of ammonia are in the flask? Express your answer to three significant figures and include the appropriate units. 2. Part B If 1.00 mol of argon is placed in a 0.500-L container at 30.0 ∘C , what is the difference between the ideal pressure (as predicted by the ideal gas...
According to the ideal gas law, a 10.08 mol sample of krypton gas in a 0.8488...
According to the ideal gas law, a 10.08 mol sample of krypton gas in a 0.8488 L container at 496.7 K should exert a pressure of 484.0 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Kr gas, a = 2.318 L2atm/mol2 and b = 3.978×10-2 L/mol. ----------------% Hint: % difference = 100 × (P ideal - Pvan der Waals) / P ideal
According to the ideal gas law, a 10.59 mol sample of argon gas in a 0.8229...
According to the ideal gas law, a 10.59 mol sample of argon gas in a 0.8229 L container at 495.4 K should exert a pressure of 523.2 atm. By what percent does the pressure calculated using the van der Waals' equation differ from the ideal pressure? For Ar gas, a = 1.345 L2atm/mol2 and b = 3.219×10-2 L/mol. ??? % Hint: % difference = 100 × (P ideal - Pvan der Waals) / P ideal
The amount n = 2.00 mol of a van der Waals gas with a = 0.245...
The amount n = 2.00 mol of a van der Waals gas with a = 0.245 m6 Pa mol-2 occupies a volume of 0.840 L if the gas is at a temperature of 85.0 K and at a pressure of 2850 kPa. From this information, calculate the van der Waals constant b and the pressure p of this gas sample when it occupies a volume of 1.680 dm3 at T = 255 K.
Use the van der Waals equation of state to calculate the pressure of 2.90 mol of...
Use the van der Waals equation of state to calculate the pressure of 2.90 mol of CH4 at 457 K in a 4.50 L vessel. Van der Waals constants can be found here. P= ________ atm Use the ideal gas equation to calculate the pressure under the same conditions. P= ______ atm
The amount 2.00 mol of a van der waals gas with a=0.245 m^6 Pa mol^-2 occupies...
The amount 2.00 mol of a van der waals gas with a=0.245 m^6 Pa mol^-2 occupies a volume of 0.840 L if the gas is at a temperature of 85k and at a pressure of 2850 kPa. From this information, calculate the van der waals constant b and pressure p of this sample when it occupies a volume of 1680 dm^3 at T=255k.
Use the van der Waals equation of state to calculate the pressure of 4.00 mol of...
Use the van der Waals equation of state to calculate the pressure of 4.00 mol of Xe at 483 K in a 4.20-L vessel. Van der Waals constants can be found here. Use the ideal gas equation to calculate the pressure under the same conditions.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT