Question

Constants The following values may be useful when solving this tutorial. Constant Value E∘Cu 0.337 V...

Constants

The following values may be useful when solving this tutorial.

Constant Value
E∘Cu 0.337 V
E∘Ni -0.257 V
R 8.314 J⋅mol−1⋅K−1
F 96,485 C/mol
T 298 K

Part A

In the activity, click on the E∘cell and Keq quantities to observe how they are related. Use this relation to calculate Keq for the following redox reaction that occurs in an electrochemical cell having two electrodes: a cathode and an anode. The two half-reactions that occur in the cell are

Cu2+(aq)+2e−→Cu(s) and Ni(s)→Ni2+(aq)+2e−

The net reaction is

Cu2+(aq)+Ni(s)→Cu(s)+Ni2+(aq)

Use the given standard reduction potentials in your calculation as appropriate.

Homework Answers

Answer #1

Get E°cell first

Remember that each species will have a specific reduction potential. Remember that this is, as the name implies, a potential to reduce. We use it to compare it (numerical) with other species.

Note that the basis if 2H+ + 2e- -> H2(g) reduction. Therefore E° = 0 V

All other samples are based on this reference.

Find the Reduction Potential of each reaction (Tables)

E∘Cu 0.337 V .

E∘Ni -0.257 V

The most positive has more potential to reduce, it will be reduced

The most negative will be oxidized, since it will donate it selectrons

For total E°cell potential:

E°cell = Ered – Eox

Eox = -Ered of the one being oxidized

E°cell = 0.337 - (-0.257 ) = 0.594V

E°cell = 0.594V

b)

dG = -nF*E°cell

dG = -rT*lnK

K = exp(nFEcell/(RT))

K = exp(2*96500*0.594/(8.314*298))

K = 1.246*10^20

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the standard reduction potentials shown here to answer the questions. Reduction half-reaction E∘ (V) Cu2+(aq)+2e−→Cu(s)...
Use the standard reduction potentials shown here to answer the questions. Reduction half-reaction E∘ (V) Cu2+(aq)+2e−→Cu(s) 0.337 2H+(aq)+2e−→H2(g) 0.000 A copper, Cu(s), electrode is immersed in a solution that is 1.00 M in ammonia, NH3, and 1.00 M in tetraamminecopper(II), [Cu(NH3)4]2+. If a standard hydrogen electrode is used as the cathode, the cell potential, Ecell, is found to be 0.073 V at 298 K. Part A Based on the cell potential, what is the concentration of Cu2+ in this solution?...
Au3+(aq) + 3e- --> Au(s) 1.498 V Ag+(aq) + e- --> Ag(s) 0.767 V Cu2+(aq) +...
Au3+(aq) + 3e- --> Au(s) 1.498 V Ag+(aq) + e- --> Ag(s) 0.767 V Cu2+(aq) + 2e- --> Cu(s) 0.342 V Ni2+(aq) + 2e- -->Ni(s) -0.257 V Calculate the potential at 25ºC for the following cell: Cu | Cu2+ [0.024M] || Ag+ [0.0048M] | Ag
What is the anode in an alkaline battery?? ------ Describe the electrodes in this nickel-copper galvanic...
What is the anode in an alkaline battery?? ------ Describe the electrodes in this nickel-copper galvanic cell. a. Drag the appropriate items to their respective bins. anode cathode gains mass loses mass Nickel                                             Copper b. The standard reduction potential for a substance indicates how readily that substance gains electrons relative to other substances at standard conditions. The more positive the reduction potential, the more easily the substance gains electrons. Consider the following: Ni2+(aq)+2e−→Ni(s),Cu2+(aq)+2e−→Cu(s),   E∘red=−0.230 V   E∘red=+0.337 V What is the standard potential,...
Electrochemical Cell Potentials Table 1: Electrochemical Cell Potentials Cell Measured Total Potential from Multimeter (V)1 Individual...
Electrochemical Cell Potentials Table 1: Electrochemical Cell Potentials Cell Measured Total Potential from Multimeter (V)1 Individual Half-Cell Potentials Cell Reactions5 ΔG (kJ)6 (Cu) Electrode Standard Potential (V)2 Metal Electrode Experimental Potential (V)3 Metal Electrode Theoretical Potential (V)4 Metal Electrode Potential % Error Cu | Sn 0.469 0.34 V 0.34-0.469 =-0.129 Cathode:       Cu2+ + 2e- -> Cu Anode:            Sn ->Sn2++ 2e- Net:          Cu2+ + Sn -> Cu + Sn2+ Cu | Al 0.796 0.34 V 0.34-0.796 =-0.456 Cathode:   Cu2+ +...
The following reactions take place in a galvanic cell: (i) Cu2+(aq)+ Ni (s)→ Cu(s) + Ni2+(aq)...
The following reactions take place in a galvanic cell: (i) Cu2+(aq)+ Ni (s)→ Cu(s) + Ni2+(aq) (ii) 2Ag+ (aq) +H2 (g) → 2Ag(s) +2H+ (aq) (iii) Cl2 (g) + Sn2+ (aq) → Sn4+ (aq) + 2Cl- (aq) (a) For each of the above spontaneous cell reactions, write the electrochemical cell using standard cell notation. (b) Use the standard reduction potentials below to evaluate EƟcell for the overall cell reaction taking place in (iii): Cl2(g) + 2e- → 2Cl- (aq) E...
In order to determine the identity of a particular transition metal (M), a voltaic cell is...
In order to determine the identity of a particular transition metal (M), a voltaic cell is constructed at 25°C with the anode consisting of the transition metal as the electrode immersed in a solution of 0.018 M M(NO3)2, and the cathode consisting of a copper electrode immersed in a 1.00 M Cu(NO3)2 solution. The two half-reactions are as follows: M(s) <--------> M2+(aq) + 2e– Cu2+(aq) + 2e– <--------> Cu(s) The potential measured across the cell is 0.79 V. What is...
Use the information given below to answer the questions about this standard electrochemical cell. ξo(V) Cu2+(aq)...
Use the information given below to answer the questions about this standard electrochemical cell. ξo(V) Cu2+(aq) + 2 e- → Cu (s) + 0.34 Zn2+(aq) + 2 e-→ Zn (s) - 0.76 Mark each of these statements as True or False. The electrons will flow from the cathode to the anode. Positively charged ions flow from the salt bridge to the anode. The solid metal cathode decreases in mass. Cu2+ is a reactant of this overall reaction. The concentration of...
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77...
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77 V Ni2+ (aq) + 2e- (aq) --> Ni(s) E = - 0.26 V Calculate the standard cell potential for the galvanic cell reaction given below and determine weather or not if the reaction is spontaneous under standard conditions. Ni2+ (aq) + 2 Fe2+ (aq) --> 2 Fe3+ (aq) + Ni(s)   SHOW ALL WORK
1. Calculate the equilibrium constant, K, for the reaction in the Galvanic Pb-Cu cell. (Report your...
1. Calculate the equilibrium constant, K, for the reaction in the Galvanic Pb-Cu cell. (Report your answer in scientific notation to three significant figures. Use * for the multiplication sign and ^ to designate the exponent.) Cu+ (aq) + Pb (s) → Cu (s) + Pb2+ (aq) Eocell = 0.647 V K = 2. For the reaction Mg (s) + Ni2+ (aq) →→ Mg2+ (aq) + Ni (s),    Eocell = 2.629 V.   Calculate the cell potential at T = 50.0oC...
Enter electrons as e-. A voltaic cell is constructed in which the anode is a Cu|Cu2+...
Enter electrons as e-. A voltaic cell is constructed in which the anode is a Cu|Cu2+ half cell and the cathode is a F-|F2 half cell. The half-cell compartments are connected by a salt bridge. (Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank.) The anode reaction is: + + The cathode reaction is: + + The net cell reaction is: + +...