Question

A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.48× 10–4 and Ka2 =...

A diprotic acid, H2A, has acid dissociation constants of Ka1 = 3.48× 10–4 and Ka2 = 3.21× 10–12. Calculate the pH and molar concentrations of H2A, HA–, and A2– at equilibrium for each of the solutions below.(a) a 0.153 M solution of H2A.(b) a 0.153 M solution of NaHA.(c) a 0.153 M solution of Na2A

Homework Answers

Answer #1

part A ) .(a) a 0.153 M solution of H2A

H2A ----------------------------> HA- + H+

0.153 0 0

0.153-x x x

Ka1 = x^2 / 0.153-x

3.48 x 10^-4 = x^2 / 0.153-x

x^2 + 3.48 x 10^-4 x - 5.32 x 10^-5 = 0

x = 7.12 x 10^-3

[HA-] = 7.12 x 10^-3 M --------------------->

[H2A] = 0.153 - (7.12 x 10^-3 )

= 0.146 M

[H2A] = 0.146 M --------------------->

[A-2] = Ka2

[A-2] = 3.21 x 10^-12 M--------------------->

pH = -log [H+]

pH = -log (7.12 x 10^-3)

pH = 2.15 --------------------->

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
given a diprotic acid, H2A, with two ionization constants of Ka1 = 1.6×10^-4 and Ka2 =...
given a diprotic acid, H2A, with two ionization constants of Ka1 = 1.6×10^-4 and Ka2 = 5.2×10^-11, calculate the ph for a .206 M solution of NaHA
A diprotic acid, H2A, has the following ionization constants: Ka1 = 1.1 10-3 and Ka2 =...
A diprotic acid, H2A, has the following ionization constants: Ka1 = 1.1 10-3 and Ka2 = 2.5 10-6. In order to make up a buffer solution of pH 5.80, which combination would you choose, NaHA/H2A or Na2A/NaHA? NaHA/H2A Na2A/NaHA pKa of the acid component
For the diprotic weak acid H2A, Ka1 = 3.2 × 10-6 and Ka2 = 5.4 ×...
For the diprotic weak acid H2A, Ka1 = 3.2 × 10-6 and Ka2 = 5.4 × 10-9. What is the pH of a 0.0550 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution? pH= [H2A]= [A2-]=
For the diprotic weak acid H2A, Ka1 = 2.6 × 10-6 and Ka2 = 8.6 ×...
For the diprotic weak acid H2A, Ka1 = 2.6 × 10-6 and Ka2 = 8.6 × 10-9. What is the pH of a 0.0600 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution? pH? H2A? A^2-?
27) For the diprotic weak acid H2A, Ka1 = 3.9 × 10-6 and Ka2 = 6.6...
27) For the diprotic weak acid H2A, Ka1 = 3.9 × 10-6 and Ka2 = 6.6 × 10-9. What is the pH of a 0.0700 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution? pH= __ [H2A]= ____ [A2-]= ____
For the diprotic weak acid H2A, Ka1 = 2.4 × 10-6 and Ka2 = 7.2 ×...
For the diprotic weak acid H2A, Ka1 = 2.4 × 10-6 and Ka2 = 7.2 × 10-9. What is the pH of a 0.0650 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution?
For the diprotic weak acid H2A, Ka1 = 3.2 × 10-6 and Ka2 = 8.4 ×...
For the diprotic weak acid H2A, Ka1 = 3.2 × 10-6 and Ka2 = 8.4 × 10-9. What is the pH of a 0.0550 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution?
For the diprotic weak acid H2A, Ka1 = 3.3 × 10-6 and Ka2 = 8.0 ×...
For the diprotic weak acid H2A, Ka1 = 3.3 × 10-6 and Ka2 = 8.0 × 10-9. What is the pH of a 0.0500 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution?
For the diprotic weak acid H2A, Ka1 = 2.3 × 10-6 and Ka2 = 8.7 ×...
For the diprotic weak acid H2A, Ka1 = 2.3 × 10-6 and Ka2 = 8.7 × 10-9. What is the pH of a 0.0500 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution?
For the diprotic weak acid H2A, Ka1 = 3.6 × 10-6 and Ka2 = 8.0 ×...
For the diprotic weak acid H2A, Ka1 = 3.6 × 10-6 and Ka2 = 8.0 × 10-9. What is the pH of a 0.0450 M solution of H2A? What are the equilibrium concentrations of H2A and A2– in this solution?