Question

4a. Use the Nernst equation to calculate the cell voltage (E) for the following redox reaction:...

4a. Use the Nernst equation to calculate the cell voltage (E) for the following redox reaction:

i. Fe3+(aq)+Cu(s)→Cu2+(aq)+Fe2+(aq), given that [Fe3+]=0.05 and [[Cu2+]=0.125M at 25°C, and

Fe3++e→Fe2+             E0=0.77 V

Cu2+2e→Cu                   E0=0.34 V

4b. Use the information provided in question 4a to calculate the change in free energy (ΔG) and change in entropy (ΔS) for the redox reaction:

i. Fe3+(aq)+Cu(s)→Cu2+(aq)+Fe2+(aq)

What do the ΔG and ΔS values indicate about the spontaneity of the redox reaction?

Homework Answers

Answer #1

2Fe3+(aq)+Cu(s) ----> Cu2+(aq)+2Fe2+(aq),

E0cell = E0cathode - E0anode

        = (0.77)-(0.337)

       = 0.433 v
Ecell = E0cell - (0.0591/n)log([Cu2+(aq)][Fe2+(aq)]^2/[Fe3+]^2)

       = 0.433 - (0.0591/2)log(0.125* 0.05^2/1)

       = 0.54 v

DG0 = - nFE0cell

     = -2*96500*0.433

     = -83.57 kj/mol

as DG0 = -ve, the process is spontaneous.

DG = - nFEcell

    = -2*96500*0.54

   =-104.22 kj/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following half-reactions: Ag+ (aq) + e- --> Ag(s) E cell = 0.80 VV Cu2+(aq)...
Consider the following half-reactions: Ag+ (aq) + e- --> Ag(s) E cell = 0.80 VV Cu2+(aq) + 2e- --> Cu(s) E cell = 0.34 V Pb2+(aq) + 2e- --> Pb(s) E cell = -0.13 V Fe2+(aq) + 2e- --> Fe(s) E cell = -0.44 V Al3+ (aq) + 3e- --> Al(s) E cell = -1.66 V Which of the above metals or metal ions will oxidize Pb(s)? a. Ag+(aq) and Cu2_(aq) b. Ag(s) and Cu(s) c. Fe2+(aq) and Al3+(aq) d....
Electrochemical Cell Potentials Table 1: Electrochemical Cell Potentials Cell Measured Total Potential from Multimeter (V)1 Individual...
Electrochemical Cell Potentials Table 1: Electrochemical Cell Potentials Cell Measured Total Potential from Multimeter (V)1 Individual Half-Cell Potentials Cell Reactions5 ΔG (kJ)6 (Cu) Electrode Standard Potential (V)2 Metal Electrode Experimental Potential (V)3 Metal Electrode Theoretical Potential (V)4 Metal Electrode Potential % Error Cu | Sn 0.469 0.34 V 0.34-0.469 =-0.129 Cathode:       Cu2+ + 2e- -> Cu Anode:            Sn ->Sn2++ 2e- Net:          Cu2+ + Sn -> Cu + Sn2+ Cu | Al 0.796 0.34 V 0.34-0.796 =-0.456 Cathode:   Cu2+ +...
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77...
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77 V Ni2+ (aq) + 2e- (aq) --> Ni(s) E = - 0.26 V Calculate the standard cell potential for the galvanic cell reaction given below and determine weather or not if the reaction is spontaneous under standard conditions. Ni2+ (aq) + 2 Fe2+ (aq) --> 2 Fe3+ (aq) + Ni(s)   SHOW ALL WORK
Which of the following is the correct cell diagram for the reaction: 2 Fe2+(aq) + Cl2...
Which of the following is the correct cell diagram for the reaction: 2 Fe2+(aq) + Cl2 (g)  ??> 2 Fe3+(aq) + 2 Cl–(aq) Fe3+(1.0M) | Fe2+(1.0M) || Cl2(g) | Cl–(1.0M) Fe(s) | Fe3+(1.0M), Fe2+(1.0M) || Cl2(g) | Cl–(1.0M) | Pt(s) Pt(s) , Fe3+(1.0M), Fe2+(1.0M) || Cl2(g), Cl–(1.0M) | Pt(s) Fe(s) | Fe3+(1.0M) | Fe2+(1.0M) || Cl2(g) | Cl–(1.0M) | Pt(s) Pt(s) | Fe2+(1.0M), Fe3+(1.0M) || Cl2(g) | Cl–(1.0M) | Pt(s) --------------- Based on the following standard reduction potentials: Fe3+ + e–  ?...
Calculate ?cell for the following concentration cell ? Cu(s) | Cu2+ (aq, 0.025M) ? Cu2+ (aq,...
Calculate ?cell for the following concentration cell ? Cu(s) | Cu2+ (aq, 0.025M) ? Cu2+ (aq, 0.30M) | Cu(s) Cu2+ (aq) + 2e- ? Cu(s) ? ?° = 0.340V A)0.0638 V B)-0.0734 V C)0.0734 V D)-0.0319 V E)0.0139 V
Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox...
Use the tabulated half-cell potentials to calculate the equilibrium constant (K) for the following balanced redox reaction at 25°C. Pb 2+(aq) + Cu(s) → Pb(s) + Cu2+(aq)
For the following reactions and given standard reduction potentials O2(g) + 4H+(aq) + 2Cu(s)  2Cu2+(aq)...
For the following reactions and given standard reduction potentials O2(g) + 4H+(aq) + 2Cu(s)  2Cu2+(aq) + 2H2O(l) O2(g) + 4H+(aq) + 4e-  2H2O(l)       E° = 1.23 V Cu2+ + 2e-  Cu(s)    E° = 0.34 V a. Calculate E°cell b. Calculate ΔG° at 254 K
Given the folloiwng two half-reactions: Fe3+ (aq) + 3 e− --> Fe (s)             E0 =...
Given the folloiwng two half-reactions: Fe3+ (aq) + 3 e− --> Fe (s)             E0 = −0.036 V Mg2+(aq) + 2 e− --> Mg (s) E0 = −2.37 V Calculate cell potential (Ecell) for a voltaic cell when [Fe3+] = 1.0 *10-3 M, [Mg2+] = 2.50 M at 25 oC Hint: (1) Write the overall redox reaction and count the number of electrons transferred; (2) determine the cell potential for a voltaic cell; (3) Calculate Q; (4) Plug in the...
Constants The following values may be useful when solving this tutorial. Constant Value E∘Cu 0.337 V...
Constants The following values may be useful when solving this tutorial. Constant Value E∘Cu 0.337 V E∘Ni -0.257 V R 8.314 J⋅mol−1⋅K−1 F 96,485 C/mol T 298 K Part A In the activity, click on the E∘cell and Keq quantities to observe how they are related. Use this relation to calculate Keq for the following redox reaction that occurs in an electrochemical cell having two electrodes: a cathode and an anode. The two half-reactions that occur in the cell are...
In order to determine the identity of a particular transition metal (M), a voltaic cell is...
In order to determine the identity of a particular transition metal (M), a voltaic cell is constructed at 25°C with the anode consisting of the transition metal as the electrode immersed in a solution of 0.018 M M(NO3)2, and the cathode consisting of a copper electrode immersed in a 1.00 M Cu(NO3)2 solution. The two half-reactions are as follows: M(s) <--------> M2+(aq) + 2e– Cu2+(aq) + 2e– <--------> Cu(s) The potential measured across the cell is 0.79 V. What is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT