Question

Ammonia was formed at 450 ◦C by passing a mixture of nitrogen gas and hydrogen gas...

Ammonia was formed at 450 ◦C by passing a mixture of nitrogen gas and hydrogen gas at a 1 : 3 mole ratio over a catalyst. When the total pressure was held constant at 10.13 bar it was found that the product gas contained 2.04% by volume of ammonia. For the reaction
(1/2)N2(g) +(3/2)H2(g) <----> NH3(g)
calculate the value of the equilibrium constant K at 450 ◦C.

Homework Answers

Answer #1

N2(g) +3H2(g) <----> 2NH3(g)

Initially say total moles = 4

1 mol N2 and 3 mol H2

total volume = V = nRT/P = 4 x 8.314 x (450+273) / 10.13 x 101325Pa = 0.023425 m3 = 23.425 L

N2(g) +3H2(g) <----> 2NH3(g)

1 3 0 initially

1-x 3-3x 2x at equilibrium

total moles = 1-x + 3-3x + 2x = 4-2x

total volume = nRT/P = (4-2x)x 8.314 x 723 K / 10.13 x 101325

2.04 % is ammonia

(4-2x)x 8.314 x 723 K / 10.13 x 101325 x 2.04 /100 = nRT/P = 2x x 8.314 x 723 / 10.13 x 101325

(4-2x) x 2.04 /100 =  2x

8.16 - 4.08x = 200x

204.08x = 8.16

x = 0.04

total volume after reaction = (4-0.08)x 8.314 x 723 K / 10.13 x 101325 = 0.02296 m3 = 22.96L

in equilibrium all the [ ] represents molar concentration

K = [NH3]2 / [N2][H2]3 = [0.04/22.96]2 / [0.96/22.96L][2.88/22.96L]3

K = 0.03678

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an iron catalyst at high temperature and pressure. N2(g) + 3 H2(g) --> 2 NH3(g) How many grams of ammonia can be prepared by reaction of 9.405 g of nitrogen with 2.413 g of hydrogen?
The formation of ammonia from elemental nitrogen and hydrogen is an exothermic process.                   N2(g) +...
The formation of ammonia from elemental nitrogen and hydrogen is an exothermic process.                   N2(g) + 3 H2(g) ⇌ 2 NH3(g)                                 ΔH = -92.2 kJ How would a system initially at equilibrium respond in order to counteract each of the following changes? Answer with “runs to the right”, “shifts to the left”, or “no effect”. a) addition of hydrogen ______________________________________ b) removal of ammonia ______________________________________ c) increasing the pressure _____________________________________ d) increasing the temperature __________________________________ e) removal of...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the...
Hydrogen gas, H2, reacts with nitrogen gas, N2, to form ammonia gas, NH3, according to the equation 3H2(g)+N2(g)→2NH3(g) 1. How many molecules (not moles) of NH3 are produced from 5.25×10−4 g of H2 ?
Consider the formation of ammonia from nitrogen gas and hydrogen gas. Balance the equation below. [1]...
Consider the formation of ammonia from nitrogen gas and hydrogen gas. Balance the equation below. [1] N2 +   [3] H2 → [2] NH3 If 5.07g of each reactant are used, what is the mass in grams of ammonia that will be produced?   ___ g What is the percent yield for this reaction if 5.31g of ammonia are actually obtained?   ___ %
2. At 450°C, ammonia gas will decompose according to the following equation: 2 NH3 (g) ...
2. At 450°C, ammonia gas will decompose according to the following equation: 2 NH3 (g)  N2 (g) + 3 H2 (g) Kc = 4.50 at 475˚C An unknown quantity of NH3 is placed in a reaction flask (with no N2 or H2) and is allowed to come to equilibrium at 475°C. The equilibrium concentration of H2 is then determined to be 0.252 M. Determine the initial concentration of NH3 placed in the flask
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the equation... 3H2+N2 --->2NH3 1.how many grams of NH3 can be produced from 3.42 mol of N2 and excess H2 2. how many grams of H2 are needed to produce 14.93 g of NH3 ? 3. How many molecules (not moles) of NH3 are produced from 6.04*10^-4 g of H2 ?
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. N2 (g) +3 H2 (g) -------------------> 2 NH3 (g) Assume 0.240 mol of N2 and 0.772 mol of H2 are present initially. 1) After complete reaction, how many moles of ammonia are produced? 2) How many moles of H2 remain? 3) How many moles of N2 remain? 4) What is the limiting reactant?
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3...
Ammonia, NH3, is produced from the reaction of gaseous nitrogen and hydrogen at high temperatures. 3 H2 (g) + N2 (g)  → 2 NH3 (g) For the reaction of 3.77 g of H2 with 8.66 g of N2, you determined that 21.2 g and 10.5 g of ammonia could be produced, respectively. In the laboratory, you reacted these masses of H2 and N2 and collected 7.70 g of NH3. What is the percentage yield of this reaction to the correct number...
Nitrogen and hydrogen combine at a high temperature, in the presence of a catalyst, to produce...
Nitrogen and hydrogen combine at a high temperature, in the presence of a catalyst, to produce ammonia. N2(g)+3H2(g)⟶2NH3(g) Assume 0.230 mol N2 and 0.758 mol H2 are present initially.PLEASE SHOW steps!! 1)After complete reaction, how many moles of ammonia NH3 are produced? 2)How many moles of H2 remain? 3)How many moles of N2 remain? 4)What is the limiting reactant? nitrogen or hydrogen
at 400 degrees celsius and 350 bar, a 1:3 mixture of nitrogen and hydrogen gases react...
at 400 degrees celsius and 350 bar, a 1:3 mixture of nitrogen and hydrogen gases react to form an equillibrium mixture containing ammonia at a mole fraction of 0.5. Assuming perfect gas behavior, calculate the equillibrium constnat, K, for: N2(g) + 3H2 = 2NH3