Question

Ammonia is produced directly from nitrogen and hydrogen by using the Haber process. The chemical reaction...

Ammonia is produced directly from nitrogen and hydrogen by using the Haber process.

The chemical reaction is N2(g)+3H2(g) ---> 2NH3 (g)

(a) Use bond enthalpies to estimate the enthalpy change for the reaction, and tell whether this reaction is exothermic or endothermic

(b) Compare the enthalpy change you calculate in (a) to the true enthalpy change as obtained using ∆Hf° values. (∆Hf° of ammonia is -46.19 kJ/mol)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In the Haber process, ammonia is synthesized from nitrogen and hydrogen: N2(g) + 3H2(g) → 2NH3(g)...
In the Haber process, ammonia is synthesized from nitrogen and hydrogen: N2(g) + 3H2(g) → 2NH3(g) ΔG° at 298 K for this reaction is -33.3 kJ/mol. The value of ΔG at 298 K for a reaction mixture that consists of 1.7 atm N2, 3.2 atm H2, and 0.85 atm NH3 is a) -139.6 b) 0.43 c) -4.63 × 103 d) -44.1 e) -1.08 × 104
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an iron catalyst at high temperature and pressure. N2(g) + 3 H2(g) --> 2 NH3(g) How many grams of ammonia can be prepared by reaction of 9.405 g of nitrogen with 2.413 g of hydrogen?
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.60 g H2 is allowed to react with 10.3 g N2, producing 2.24 g NH3. Part A) What...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. 1.71 g H2 is allowed to react with 10.1 g N2, producing 1.36 g NH3. Part A What...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts...
The Haber-Bosch process is a very important industrial process. In the Haber-Bosch process, hydrogen gas reacts with nitrogen gas to produce ammonia according to the equation 3H2(g)+N2(g)→2NH3(g) 1.16 g H2 is allowed to react with 10.2 g N2, producing 2.55 g NH3. The ammonia produced in the Haber-Bosch process has a wide range of uses, from fertilizer to pharmaceuticals. However, the production of ammonia is difficult, resulting in lower yields than those predicted from the chemical equation. Part A: What...
Consider the following balanced reaction between hydrogen and nitrogen to form ammonia: 3H2(g) + N2(g)→2NH3(g) How...
Consider the following balanced reaction between hydrogen and nitrogen to form ammonia: 3H2(g) + N2(g)→2NH3(g) How many moles of NH3 can be produced from 24.0 mol of H2 and excess N2? Express the number of moles to three significant figures.
Ammonia is formed by the Haber process according to the following reaction: N2(g) + 3H2(g) ⇌...
Ammonia is formed by the Haber process according to the following reaction: N2(g) + 3H2(g) ⇌ 2NH3(g) Use the following data table to answer the questions below: Substance: ΔHf (kJ/mol) So (J/(mol*K) N2(g) 0    187.4 H2(g) 0 127.1 NH3(g) -47.3 197.6 Part 1: Using the table in the introduction, calculate the value of ΔH in units of kJ/mol. After, calculate the value of ΔS in units of J/(mol*K). Finally, cCalculate the value of ΔG in units of kJ/mol for...
In the Haber process, ammonia is manufactured by the reaction of nitrogen and hydrogen. Suppose 68.5...
In the Haber process, ammonia is manufactured by the reaction of nitrogen and hydrogen. Suppose 68.5 kg of gaseous nitrogen is reacted with 5.60 kg of gaseous hydrogen and 27.6 kg NH3 is produced. Which choice is closest to the percent yield of the reaction? -58.1% -66.0% -33.0% -87.7%
In producing ammonia by the Haber process. A 3:1 hydrogen-nitrogen molar ratio is feed to the...
In producing ammonia by the Haber process. A 3:1 hydrogen-nitrogen molar ratio is feed to the ammonia unit. The fresh feed contains 0.31 mol argon per 100 mol hydrogen-nitrogen mixture. It has been determined that the concentration of argon in the reactor must be no greater than 4 mol argon per 100 mil hydrogen-nitrogen mixture. A 20 % conversion of reactants to ammonia is obtained per pass and all of the ammonia produced are removed in the absorber. Calculate: a)...
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. N2(g) + 3H2(g) --> 2NH3(g) assume 4 molecules of nitrogen and 9 molecules of hydrogen are present. After complete reaction, how many molecules of ammonia are produced? How many molecules of H2 remain? How many molecules of N2 remain? What is the limiting reactant? hydrogen or nitrogen Please answer all questions and explain this is due today thank you :)