Question

A sample of steam with a mass of 0.532 g at a temperature of 100 ∘C...

A sample of steam with a mass of 0.532 g at a temperature of 100 ∘C condenses into an insulated container holding 4.25 g of water at 4.0 ∘C. (For water, ΔH∘vap=40.7 kJ/mol and Cwater=4.18 J/(g⋅∘C).)

Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture?

Homework Answers

Answer #1

Molar mass of water = 18.01532 g/mol (For water, ΔHvap=40.7 kJ/mol and Cwater=4.18 J/(g⋅C).)

(40.7 kJ/mol) x ((0.532 g H2O) / (18.01532 g H2O/mol)) = 1.2018 kJ = 1201.8 J lost by the steam

Supposing the heat lost by the steam is gained by the cold water:
(1201.8 J) / (4.18 J/g⋅C) / (4.25g) = 67.65 C (an insulated container holding 4.25 g of water at 4.0 C)

change
4.0 C + 67.65 C = 71.65 C

Now you have two bodies of water, 0.532 g at 100C, and 4.25 g at 71.65 C,

so find the final temperature using a weighted average:
((0.532g x 100C) + (4.25g x 71.65C)) / (0.532g + 4.25g) = (53.2 g/C + 304.51g/C ) / (4.782g) = 74.80C

Assuming that no heat is lost to the surroundings.

Therefore, the final temperature of the mixture = 74.80C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sample of steam with a mass of 0.520 g and at a temperature of 100...
A sample of steam with a mass of 0.520 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.45 g of water at 5.0 ∘C.( ΔH∘vap=40.7 kJ/mol, Cwater=4.18 J/g⋅∘C) Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture?
A) Four ice cubes at exactly 0 ∘C with a total mass of 53.5 g are...
A) Four ice cubes at exactly 0 ∘C with a total mass of 53.5 g are combined with 140 g of water at 85 ∘Cin an insulated container. (ΔH∘fus=6.02 kJ/mol, cwater=4.18J/g⋅∘C) If no heat is lost to the surroundings, what is the final temperature of the mixture? B) A sample of steam with a mass of 0.510 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.50 g of water at 2.0 ∘C.( ΔH∘vap=40.7 kJ/mol,...
1) A sample of steam with a mass of 0.505 g and at a temperature of...
1) A sample of steam with a mass of 0.505 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.25 g of water at 3.0∘C.( ΔH∘vap=40.7 kJ/mol, Cwater=4.18 J/g⋅∘C) Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture? In celcius! 2) Nanomaterials are materials that have dimensions on the 1- to 100-nm scale. Carbon, metals, and semiconductors exhibit distinct properties on the nanoscale that differ from their...
A sample of steam with a mass of 0.551 g and at a temperature of 100...
A sample of steam with a mass of 0.551 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.20 g of water at 5.0 ∘C . Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture? For water, ΔHvap=40.7kJ/mol (at 100 ∘C) . what is the temperate?
Four ice cubes at exactly 0 ∘C with a total mass of 55.0 g are combined...
Four ice cubes at exactly 0 ∘C with a total mass of 55.0 g are combined with 130 g of water at 80 ∘C in an insulated container. (ΔH∘fus=6.02 kJ/mol, cwater=4.18J/g⋅∘C) If no heat is lost to the surroundings, what is the final temperature of the mixture
Four ice cubes at exactly 0 ∘C with a total mass of 53.0 g are combined...
Four ice cubes at exactly 0 ∘C with a total mass of 53.0 g are combined with 140 g of water at 90 ∘C in an insulated container. (ΔH∘fus=6.02 kJ/mol, cwater=4.18J/g⋅∘C). If no heat is lost to the surroundings, what is the final temperature of the mixture?
Four ice cubes at exactly 0 ∘C with a total mass of 51.5 g are combined...
Four ice cubes at exactly 0 ∘C with a total mass of 51.5 g are combined with 160 g of water at 75 ∘C in an insulated container. (ΔH∘fus=6.02 kJ/mol, cwater=4.18J/g⋅∘C) . If no heat is lost to the surroundings, what is the final temperature of the mixture? Show Work
Steam at 100.°C was passed into a flask containing 360.0 g of water at 21°C where...
Steam at 100.°C was passed into a flask containing 360.0 g of water at 21°C where the steam condensed. How many grams of steam must have condensed if the temperature of the water in the flask was raised to 78°C? The heat of vaporization of water at 100.°C is 40.7 kJ/mol, and the specific heat is 4.18 J/(g·°C).
If the temperature of the surroundings is 38.36 °C, calculate the entropy change (in J/K) for...
If the temperature of the surroundings is 38.36 °C, calculate the entropy change (in J/K) for the system (ΔSsys), surroundings (ΔSsur) and universe (ΔSuniverse) when 48.1 g of gaseous carbon tetrachloride (CCl4) condenses. Report your answers to two decimal places. Tfus(°C) -23.00 Tvap(°C) 76.80 ΔH°fus (kJ/mol) 3.28 ΔH°vap (kJ/mol) 29.82
What mass of steam at 100°C must be mixed with 216 g of ice at its...
What mass of steam at 100°C must be mixed with 216 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 65.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.