Question: An iron-carbon alloy initially containing 0.308 wt% C is exposed to an oxygen-rich and virtually ...
An iron-carbon alloy initially containing 0.308 wt% C is exposed to an oxygen-rich and virtually carbon-free atmosphere at 1090°C. Under these circumstances the carbon diffuses from the alloy and reacts at the surface with the oxygen in the atmosphere; that is, the carbon concentration at the surface position is maintained essentially at 0.0 wt% C. At what position will the carbon concentration be 0.231 wt% after a 5 h treatment? The value of D at 1090°C is 4.8 × 10-11 m2/s.
z | erf(z) | z | erf(z) | z | erf(z) | |||||
0.00 | 0.0000 | 0.55 | 0.5633 | 1.3 | 0.9340 | |||||
0.025 | 0.0282 | 0.60 | 0.6039 | 1.4 | 0.9523 | |||||
0.05 | 0.0564 | 0.65 | 0.6420 | 1.5 | 0.9661 | |||||
0.10 | 0.1125 | 0.70 | 0.6778 | 1.6 | 0.9763 | |||||
0.15 | 0.1680 | 0.75 | 0.7112 | 1.7 | 0.9838 | |||||
0.20 | 0.2227 | 0.80 | 0.7421 | 1.8 | 0.9891 | |||||
0.25 | 0.2763 | 0.85 | 0.7707 | 1.9 | 0.9928 | |||||
0.30 | 0.3286 | 0.90 | 0.7970 | 2.0 | 0.9953 | |||||
0.35 | 0.3794 | 0.95 | 0.8209 | 2.2 | 0.9981 | |||||
0.40 | 0.4284 | 1.0 | 0.8427 | 2.4 | 0.9993 | |||||
0.45 | 0.4755 | 1.1 | 0.8802 | 2.6 | 0.9998 | |||||
0.50 | 0.5205 | 1.2 | 0.9103 | 2.8 | 0.9999 |
(Cx-Co)/(Cs-Co)= 1-erf(x/2*sqrt(Dt)
Cx= wt% at distance x=0.231 wt%, Co= initial weight % = 0.308 wt%, , Cs= wt% at the surface=0
D= 4.8*10-11 m2/s t= 5 hr= 5*60*60 seconds =18000 seconds, x need to be determined
(0.231-0.308)/(0-0.308)= 1-erf(x/2*Sqrt(Dt)
erf(x/2*Sqrt(Dt)= 0.75
let Z= x/2*sqrt*(Dt)
given Z= 0.8 erf (Z)=0.7421
Z= ?, erf(Z)= 0.75
Z= 0.85, erf(Z)= 0.7707
hence (Z-0.8)/ (0.85-0.8)= (0.75-0.7421)/(0.7707-0.7421)
Z= 0.8138
hence x/2*sqrt(Dt)= 0.8138
x= 0.8138* 2*Sqrt(4.8*10-11*18000)= 0.0015 m
Get Answers For Free
Most questions answered within 1 hours.