Question

A 125.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with...

A 125.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with a 225.0 −mL sample of a solution that is 0.12 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?

Homework Answers

Answer #1

after mixing volume of solution = 125+225 = 350 ml

using dilution law we find final molarity of AgNO3 , M1V1 = M2V2

2.9 x 10^-3 x 125 = M2 x 350 ,     M2 = 0.001036 M , [Ag+] = 0.001036 M

for NaCN , M2 = ( 0.12 x 225 /350) = 0.077 , [CN-] = 0.077M

Ag+ (aq) + CN- (aq) --> AgCN (s) , Ksp = 1.6 x 10^-14

[CN-] left after reactiong with 0.001036 [Ag+]   = 0.077-0.001036 = 0.076 M

Ksp = [Ag+] [CN-]

1.6 x 10^-14 = [Ag+] ( 0.076)

[Ag+] = 2.1 x 10^-13 M

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 125.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with...
A 125.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with a 230.0 −mL sample of a solution that is 0.12 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 115.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with...
A 115.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with a 230.0 −mL sample of a solution that is 0.10 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains? Express your answer using two significant figures.
A 110.0 −mL sample of a solution that is 2.7×10−3 M in AgNO3 is mixed with...
A 110.0 −mL sample of a solution that is 2.7×10−3 M in AgNO3 is mixed with a 225.0 −mL sample of a solution that is 0.14 M in NaCN. A complex ion forms. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 115.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with...
A 115.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with a 230.0 −mL sample of a solution that is 0.14 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with...
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with a 220.0 −mL sample of a solution that is 0.13 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 110.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with...
A 110.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with a 220.0 −mL sample of a solution that is 0.13 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with...
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with a 220.0 −mL sample of a solution that is 0.13 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains? Answer with 2 sig. figures.
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with...
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with a 220.0 −mL sample of a solution that is 0.13 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains? Answer with 2 sig. figures.
A 110.0 −mL sample of a solution that is 2.8×10−3 M  in AgNO3  is mixed with a 230.0...
A 110.0 −mL sample of a solution that is 2.8×10−3 M  in AgNO3  is mixed with a 230.0 −mL sample of a solution that is 0.14 M in NaCN. A complex ion forms. Question:   After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
You mix a 125.0 mL sample of a solution that is 0.0100 M in NiCl2 with...
You mix a 125.0 mL sample of a solution that is 0.0100 M in NiCl2 with a 166.0 mL sample of a solution that is 0.253 M in NH3. After the solution reaches equilibrium, what concentration of Ni2+(aq) remains? (Formation constant is Kf=2.0×108.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT