Question

Suppose 0.829g of ammonium iodide is dissolved in 250.mL of a 30.0mM aqueous solution of potassium...

Suppose 0.829g of ammonium iodide is dissolved in 250.mL of a 30.0mM aqueous solution of potassium carbonate.

Calculate the final molarity of iodide anion in the solution. You can assume the volume of the solution doesn't change when the ammonium iodide is dissolved in it.

Round your answer to 3 significant digits.

Homework Answers

Answer #1

K2CO3 (aq) + 2NH4I (aq) ---- > 2KI(aq) + (NH4)2CO3(aq)

Given that

0.829 g of ammonium iodide

Number of moles = amount in g / molar mass

= 0.829 g/ 144.94293 g/mol

= 0.00572 moles NH4I

One mole given one mole I-

So there are 0.00572 mole I- ions present.

In the reaction of potassium carbonate and ammonium iodide, potassium iodide and ammonium carbonate are formed which are ionic species and present as ion . \\ thus in the reaction mixture there are 0.00572 mole I- ions present.

Molarity = number of ions/ volume in L

= are 0.00572 mole I- ions /250*1/1000

= 0.25 M I- ions

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose 1.87g of ammonium iodide is dissolved in 300.mL of a 45.0mM aqueous solution of potassium...
Suppose 1.87g of ammonium iodide is dissolved in 300.mL of a 45.0mM aqueous solution of potassium carbonate. Calculate the final molarity of ammonium cation in the solution. You can assume the volume of the solution doesn't change when the ammonium iodide is dissolved in it. Round your answer to 3 significant digits.
Suppose 3.10g of sodium iodide is dissolved in 250.mL of a 73.0mM aqueous solution of silver...
Suppose 3.10g of sodium iodide is dissolved in 250.mL of a 73.0mM aqueous solution of silver nitrate. Calculate the final molarity of iodide anion in the solution. You can assume the volume of the solution doesn't change when the sodium iodide is dissolved in it. Round your answer to 2 significant digits.
Suppose 35.7g of potassium iodide is dissolved in 350.mL of a 0.50 M aqueous solution of...
Suppose 35.7g of potassium iodide is dissolved in 350.mL of a 0.50 M aqueous solution of silver nitrate. Calculate the final molarity of iodide anion in the solution. You can assume the volume of the solution doesn't change when the potassium iodide is dissolved in it. Be sure your answer has the correct number of significant digits.
Suppose 0.332g of zinc chloride is dissolved in 50.mL of a 48.0mM aqueous solution of potassium...
Suppose 0.332g of zinc chloride is dissolved in 50.mL of a 48.0mM aqueous solution of potassium carbonate. Calculate the final molarity of chloride anion in the solution. You can assume the volume of the solution doesn't change when the zinc chloride is dissolved in it. Be sure your answer has the correct number of significant digits.
Suppose 2.10g of lead(II) acetate is dissolved in 350.mL of a 65.0mM aqueous solution of ammonium...
Suppose 2.10g of lead(II) acetate is dissolved in 350.mL of a 65.0mM aqueous solution of ammonium sulfate. Calculate the final molarity of acetate anion in the solution. You can assume the volume of the solution doesn't change when the lead(II) acetate is dissolved in it. Be sure your answer has the correct number of significant digits.
Suppose 2.27g of lead(II) nitrate is dissolved in 300.mL of a 52.0mM aqueous solution of ammonium...
Suppose 2.27g of lead(II) nitrate is dissolved in 300.mL of a 52.0mM aqueous solution of ammonium sulfate. Calculate the final molarity of nitrate anion in the solution. You can assume the volume of the solution doesn't change when the lead(II) nitrate is dissolved in it. Be sure your answer has the correct number of significant digits.
Suppose 1.35g of iron(II) chloride is dissolved in 250.mL of a 29.0mM aqueous solution of silver...
Suppose 1.35g of iron(II) chloride is dissolved in 250.mL of a 29.0mM aqueous solution of silver nitrate.Calculate the final molarity of chloride anion in the solution. You can assume the volume of the solution doesn't change when the iron(II) chloride is dissolved in it.Round your answer to 3 significant digits.
Suppose 0.793g of barium nitrate is dissolved in 300.mL of a 0.10M aqueous solution of ammonium...
Suppose 0.793g of barium nitrate is dissolved in 300.mL of a 0.10M aqueous solution of ammonium sulfate. Calculate the final molarity of nitrate anion in the solution. You can assume the volume of the solution doesn't change when the barium nitrate is dissolved in it.
Suppose 0.891g of ammonium acetate is dissolved in 50.mL of a 0.10M aqueous solution of sodium...
Suppose 0.891g of ammonium acetate is dissolved in 50.mL of a 0.10M aqueous solution of sodium chromate. Calculate the final molarity of ammonium cation in the solution. You can assume the volume of the solution doesn't change when the ammonium acetate is dissolved in it.
Suppose 1.06g of iron(II) bromide is dissolved in 200.mL of a 52.0mM aqueous solution of silver...
Suppose 1.06g of iron(II) bromide is dissolved in 200.mL of a 52.0mM aqueous solution of silver nitrate. Calculate the final molarity of bromide anion in the solution. You can assume the volume of the solution doesn't change when the iron(II) bromide is dissolved in it. Be sure your answer has the correct number of significant digits.