Question

What final temperature would you expect from a chemical ice pack with an initial temperature of...

What final temperature would you expect from a chemical ice pack with an initial temperature of 25.0 oC that mixes 30.00 g of KNO3 (∆H = 34.89 kJ/mol) with 200.0 g water? Assume that the specific heat of the solution is 4.18 J/goC.

Homework Answers

Answer #1

moles of KNO3 = mass / molar mass

                         = 30.0 / 101.1

                         = 0.297

∆H   = - Q / n

34.89 = - Q / 0.297

Q = -10.353 kJ = -10353 J

Q = m Cp dT

-10353 J = 230 x 4.18 x dT

dT = -10.77

T2 - T1 = -10.77

T2 - 25 = -10.77

T2 = 14.2 oC

final temperature = 14.2 oC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Instant hot packs contain a solid and a pouch of water. When the pack is squeezed,...
Instant hot packs contain a solid and a pouch of water. When the pack is squeezed, the pouch breaks and the solid dissolves, increasing the temperature because of the exothermic reaction. The following reaction is used to make a hot pack: LiCl(s)⟶Li+(aq)+Cl−(aq)ΔH=−36.9kJ What is the final temperature in a squeezed hot pack that contains 23.9 g of LiCl dissolved in 139 mL of water? Assume a specific heat of 4.18 J/(g⋅∘C)for the solution, an initial temperature of 25.0 ∘C, and...
When 3.02 g NH4Cl solid was dissolved in 20.05 mL of water, the resulting 23.07 g...
When 3.02 g NH4Cl solid was dissolved in 20.05 mL of water, the resulting 23.07 g solution temperature decreased from 19.80 oC to 11.25 oC. Calculate the enthalpy change ?H in kJ, when 1 mol of NH4Cl dissolves in water. The specific heat of the solution is 4.18 J/g oC.
If 3.403 g KOH are dissolved in 100.327 g H2O and the temperature increases by 4.28...
If 3.403 g KOH are dissolved in 100.327 g H2O and the temperature increases by 4.28 oC, the enthalpy of dissolution of KOH in water is ___ kJ/mol. Assume the specific heat of the resulting KOH solution is 4.18 J g-1oC-1.
1.) A volume of 36.7 mL of H2O is initially at 28.0 oC. A chilled glass...
1.) A volume of 36.7 mL of H2O is initially at 28.0 oC. A chilled glass marble weighing 4.00 g with a heat capacity of 3.52 J/oC is placed in the water. If the final temperature of the system is 26.4  oC , what was the initial temperature of the marble? Water has a density of 1.00 g/mL and a specific heat of 4.18 J/goC. Enter your answer numerically, to three significant figures and in terms of oC. 2.) A 2.24...
1. What is the final temperature of a solution initially at 22.0 celsius if 2.45 g...
1. What is the final temperature of a solution initially at 22.0 celsius if 2.45 g of a solid is dropped into 34.5 g of the solution resulting in the reaction between the two that absorbs 1350 J of heat? 2. If a 31.25g piece of an unknown metal at 25 Celsius was added to 25.0 g of water at 100.0Celsius and the two equilibrated at 95.2 Celsius , what is the specific heat capacity of the metal? 3. In...
A metal sample weighing 72.1 g is placed in a hot water bath at 95.0 oC....
A metal sample weighing 72.1 g is placed in a hot water bath at 95.0 oC. The calorimeter contains 42.3 g of deoinized water. The initial temperature of the water is 22.3 oC. The metal is transferred to the calorimeter and the final temperature reached by the water + metal is 32.2 oC. A. Calculate ∆T for the water (Tfinal – Tinitial). B. Calculate ∆T for the metal. C. The specific heat of water is 4.18 J/goC. Calculate the specific...
3. A sample of metal weighing 35.5g at a temperature of 100 oC was placed in...
3. A sample of metal weighing 35.5g at a temperature of 100 oC was placed in a calorimeter containing 50 g of water at 25.0 oC. At equilibrium the temperature of water and metal was 35.5 oC. Calculate the heat capacity of the metal. . Use this value for Cp:27.65. 4. When 0.50 g of magnesium metal is placed in a calorimeter, and 100. mL of 1.0 M HCl were added the temperature of solution increased from 22.2 oC to...
A 20.0-g sample of ice at 210.08C is mixed with 100.0 g water at 80.08C. Calculate...
A 20.0-g sample of ice at 210.08C is mixed with 100.0 g water at 80.08C. Calculate the final temperature of the mixture assuming no heat loss to the surroundings. The heat capacities of H 2 O(s) and H 2 O(l) are 2.03 and 4.18 J/g ? 8C, respectively, and the enthalpy of fusion for ice is 6.02 kJ/mol.
When 40.0 g of NaOH is added to water to make 550.0 g of solution, the...
When 40.0 g of NaOH is added to water to make 550.0 g of solution, the temperature increases from 22.0 oC to 41.3 oC. What is the heat of solution for sodium hydroxide per mole? Assume the specific heat capacity for the solution is 4.18 J/goC.
Calculate the enthalpy change, ΔH, for the process in which 10.3 g of water is converted...
Calculate the enthalpy change, ΔH, for the process in which 10.3 g of water is converted from liquid at 9.4 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18  J/(g⋅∘C) for H2O(l). How many grams of ice at -24.5 ∘C can be completely converted to liquid at 9.8 ∘C if the available heat for this process is 5.03×103 kJ ? For ice, use a specific heat of 2.01 J/(g⋅∘C) and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT