For mercury, ∆Hfuso = 2.292 kJ mol-1, and its normal freezing point is 234.3 K. The change in molar volume on melting ∆Vfus = 0.517 cm3 mol-1. Calculate the melting point of mercury at 20.0 bar.
we know that
dP/dT= deltaH fusion/ deltaVT
dP= (deltaHfusion/deltaV)(dT/T)
when integrated, the equation becomes
P2-P1= (deltaHfusion/deltaV)*dT/T,
deltaHfuson= 2.292Kj/mole= 2.292*1000J/mole. 101.3 L.atm= 1 J
hence deltaH fusion= (2.292*1000/101.3)L.atm/mole= 22.63 L.atm/mole
delaV fusion = 0.517 cm3/mole, 1000CC= 1L
deltaV fusion = 0.517/1000 L/mole = 0.517*10-3 L/mole =
hence dP= (22.63/0.517*10-3)*dT/T=43764 dT/T
when integrated P2- P1= 43764* ln (T2/T1) give normal freezing point is 234.3 at 1 atm
given P1= 1 atm and T1= 234.3 K, P2= 20 bar= 20*0.9869 atm =19.74 atm
19.74-1= 43764*ln(T2/ 234.3)
ln(T2/234.3)= 0.000428
T2/ 234.3= 1.000428
T2= 234.3*1.000428=234.4 K
Get Answers For Free
Most questions answered within 1 hours.