Question

The glycerol-3-phosphate shuttle can transport cytosolic NADH equivalents into the mitochondrial matrix (see Fig. 15.11c). In...

The glycerol-3-phosphate shuttle can transport cytosolic NADH equivalents into the mitochondrial matrix (see Fig. 15.11c). In this shuttle, the protons and electrons are donated to FAD, which is reduced to FADH2. These protons and electrons are subsequently donated to coenzyme Q in the electron transport chain. Given that the number of ATP molecules made per NADH and FADH2 oxidation differ by ____? the amount of ATP generated per mole of glucose when the glycerol-3-phosphate shuttle would be ____ instead of 32.

Homework Answers

Answer #1

The glycerol-3-phosphate shuttle can transport cytosolic NADH equivalents into the mitochondrial matrix. In this shuttle, the protons and electrons are donated to FAD, which is reduced to FADH2. These protons and electrons are subsequently donated to coenzyme Q in the electron transport chain.

Given that the number of ATP molecules made per NADH and FADH2 oxidation differ by 2.5 molecules of ATP generated NADH and 1.5 molecules of ATP generates FADH2.

When glucose is metabolized anaerobically the only net ATP produced from the substrate phosphorylation steps and this leads to only two ATPs per glucose entering glycolysis thus,the amount of ATP generated per mole of glucose when the glycerol-3-phosphate shuttle would be 30 instead of 32.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) Mitochondrial DNA is a) maternally inherited b) paternally inherited c) responsible for multiple sclerosis d)...
1) Mitochondrial DNA is a) maternally inherited b) paternally inherited c) responsible for multiple sclerosis d) 10 times less likely to mutate than nuclear DNA 2) All of the following statements about the enzymic complex that carries out the synthesis of ATP during oxidative phosphorylation are correct EXCEPT: A. It is located on the matrix side of the inner mitochondrial membrane. B. It is inhibited by oligomycin. C. It contains a proton channel. D. It can exhibit ATPase activity. E....
he FoF1 synthesis of ATP depends on delivery of electrons carried by NADH and FADH2 to...
he FoF1 synthesis of ATP depends on delivery of electrons carried by NADH and FADH2 to electron transport systems in the inner mitochondrial membrane in eukaryotic cells . What is the maximum number of ATPs generated for the following? a. one molecule of FADH2 produced during the citric acid cycle b. one molecule of NADH produced during the citric acid cycle c. one molecule of NADH produced by glycolysis in a muscle cell that uses the mitochondrial glycerol phosphate shuttle...
The universal reducing equivalents in the form of NADH, harnessed from glycolysis, PDH, & the TCA...
The universal reducing equivalents in the form of NADH, harnessed from glycolysis, PDH, & the TCA cycle, hand off their electrons to Complex # __________ of the electron transfer chain of the mitochondrial inner membrane. The universal reducing equivalent in the form of FADH2, generated by the enzyme called ________________ of the citric acid cycle, hands off its electrons to Complex # _________________ of the electron transfer chain. As electrons move down the electron transport chain, there is a net...
1. Which of the following pairs of redox molecules is NOT in the proper order of...
1. Which of the following pairs of redox molecules is NOT in the proper order of lower to higher reduction potential? a.) FAD bound to succinate dehydrogenase then FMN b.) FMN then Fe-S from Complex I c.) Fe-S cluster from Complex II then CoQ d.) Cyt a3 then oxygen e.) all are correct 2. put the following components of the electron transport chain in order. a.) cytochrome c b.) coenzyme Q c.) oxygen d.) Fe-S cluster from Complex I e.) flavin...
14) Consider the oxidation of glucose to carbon dioxide and water and the production of ATP...
14) Consider the oxidation of glucose to carbon dioxide and water and the production of ATP a. How many electrons pass through the mitochondrial electron transport chain per glucose molecule oxidized? b. How many protons are pumped in the process? Remember that not all electrons go through NADH. c. How much energy would be stored per mole of glucose by the resulting membrane potential at 37C (assume that the pH is 0.5 units lower on the outside than on the...
Raffinose is a trisaccharide composed of galactose, glucose and fructose. The bacterium H. seymourensis can utilize...
Raffinose is a trisaccharide composed of galactose, glucose and fructose. The bacterium H. seymourensis can utilize this carbohydrate as its sole source of carbon and energy. What is the theoretical yield of ATP derived during the complete oxidation of one mole of raffinose by H. seymourensis?   Assume 2 ATP are generated per NADH formed and 1 ATP per FADH2 formed.  To answer this question, you may or may not need to know the following. A. Raffinose is brought into the cell in...
1. Which sentence best defines signal transduction in a biochemical context? a. Alteration of cell functions...
1. Which sentence best defines signal transduction in a biochemical context? a. Alteration of cell functions in response to the environment b. Generation of a chemical change in response to information c. Induction of cell death upon nutrient starvation d. Responses to stimuli 2. Which statement is correct? a. G protein-coupled receptors produce second messengers indirectly while receptor enzymes catalyse second messenger generation b. Second messengers stimulate the activity of G protein-coupled receptors. c. Receptor enzymes produce second messengers through...
1. In the reoxidation of QH2 by purified ubiquinone-cytochrome c reductase (Complex III) from heart muscle,...
1. In the reoxidation of QH2 by purified ubiquinone-cytochrome c reductase (Complex III) from heart muscle, the overall stoichiometry of the reaction requires 2 mol of cytochrome c per mole of QH2 because: a. cytochrome c is a one-electron acceptor, whereas QH2 is a two-electron donor. b. cytochrome c is a two-electron acceptor, whereas QH2 is a one-electron donor. c. cytochrome c is water soluble and operates between the inner and outer mitochondrial membranes d. heart muscle has a high...
1 In the absence of oxygen, cells consume glucose at a high, steady rate. When oxygen...
1 In the absence of oxygen, cells consume glucose at a high, steady rate. When oxygen is added, glucose consumption drops precipitously and is then maintained at the lower rate. Why is glucose consumed at a high rate in the absence of oxygen and at a low rate in its presence? 2 In the following diagram showing the distribution of thermal energy in a population of substrate molecules, the energy thresholds indicated by numbers represent ... Energy per molecule Number...
Question 51 Tubular reabsorption results in solutes entering the ___________; tubular secretion causes solutes to enter...
Question 51 Tubular reabsorption results in solutes entering the ___________; tubular secretion causes solutes to enter the ___________. Select one: a. blood; filtrate b. Distal convoluted tubule; Glomerulus c. Nephron loop; Renal corpuscle d. filtrate; blood Question 52 Complete 2.00 points out of 2.00 Flag question Question text Alcohol acts as a diuretic because it: Select one: a. increases the rate of glomerular filtration. b. inhibits the release of anti-diuretic hormone (ADH). c. is not reabsorbed by the tubule cells....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT