Question

An 80.0-gram sample of a gas was heated from 25 °C to 225 °C. During this...

An 80.0-gram sample of a gas was heated from 25 °C to 225 °C. During this process, 346 J of work was done by the system and its internal energy increased by 6945 J. What is the specific heat of the gas?

Homework Answers

Answer #1

we have relation dU = Q + W  

where dU = change in internal energy = 6945 J ,   W = work done = -346 J   ( since work done by system we take -ve sign) , we find Q

6945 = Q -346

Q = 7291 J = heat absorbed by gas

we have formula Q = m x S x dT    where m = mass of gas = 80g,   S = specific heat of gas ,

dT = change in temp == 225-25 = 200 c

substituting we egt 7291 J = 80g x ( S) x ( 200c)

S ( specific heat) = 0.4557 J/gC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.0800 kg sample of gas is heated from 25 C to 225 C. During this...
A 0.0800 kg sample of gas is heated from 25 C to 225 C. During this process. 340 J of work is done by the gas and its internal energy increases by 6090 J. How much heat is transferred to the gas?
(a) During an isothermal process, 5.00 J of heat is removed from an ideal gas. Determine...
(a) During an isothermal process, 5.00 J of heat is removed from an ideal gas. Determine the work done in the process and the internal energy change. (b) If the 300 J of work is done in compressing a gas adiabatically, determine the change in internal energy of the gas and amount of heat removed. (c) In an isochoric process, the internal energy of a system decreases by 50.0 J. Determine the work done in the process and the amount...
13)One mole of neon gas is heated from 358 K to 426 K at constant pressure....
13)One mole of neon gas is heated from 358 K to 426 K at constant pressure. Note that neon has a molar specific heat of c = 20.79 J/mol · K for a constant–pressure process. (a) Calculate the energy Q transferred to the gas. kJ (b) Calculate the change in the internal energy of the gas. kJ (c) Calculate the work done on the gas. kJ
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and...
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and placed into a coffee cup calorimeter containing 42.92 grams of water initially at 15.15 °C. What will the final temperature of the system be? (Specific heat of water is 4.184 J/g°C). Please show work.
A 4.5 kg block of aluminum is heated from 29?C to 97?C at atmospheric pressure. Find...
A 4.5 kg block of aluminum is heated from 29?C to 97?C at atmospheric pressure. Find the work done by the aluminum. Assume the density of aluminum is 2700 kg/m3 and the thermal coefficient of expansion is 2.4 × 10?5 ( ?C)?1 . Answer in units of J Find the amount of energy transferred to it by heat. Assume the specific heat of aluminum is 900 J/kg · ? C. Answer in units of J. Find the increase in its...
1A: During a process, 28 J of heat are transferred into a system, while the system...
1A: During a process, 28 J of heat are transferred into a system, while the system itself does 14 J of work. What is the change in the internal energy of the system?    __________ J 1B: If the internal energy of an ideal gas increases by 170 J when 250 J of work are done to compress it, how much heat is released?    __________ J 1C: It takes 270 cal to raise the temperature of a metallic ring...
The figure shows a pV diagram for a gas going through a cycle from A to...
The figure shows a pV diagram for a gas going through a cycle from A to B to C and back to A. From point A to point B, the gas absorbs 50 J of heat and finds its internal (thermal) energy has increased by 20 J. Going from B to C, the internal (thermal) energy decreases by 5.0 J. (a) How much work was done by the gas from A to B? (b) How much work was done by...
20. A 5 kg block of aluminum is heated from 11?C to 99?C at atmospheric pressure....
20. A 5 kg block of aluminum is heated from 11?C to 99?C at atmospheric pressure. Assume the density of aluminum is 2700 kg/m3 and the thermal coefficient of expansion is 2.4 × 10?5 ( ?C)?1 . a. Find the work done by the aluminum. Answer in units of J. b. Find the amount of energy transferred to it by heat. Assume the specific heat of aluminum is 900 J/kg · ? C. Answer in units of J. c. Find...
One mole of nitrogen gas confined within a cylinder by a piston is heated from 0°C...
One mole of nitrogen gas confined within a cylinder by a piston is heated from 0°C to 852°C at 1.00 atm. (a) Calculate the work of expansion of the gas in joules (1 J = 9.87 × 10−3 L·atm). Assume all the energy is used to do work. (Enter your answer in scientific notation.) (b) What would be the temperature change if the gas were heated with the same amount of energy in a container of fixed volume? (Assume the...
A gas is compressed at a constant pressure of 0.800 atm from 10.00 L to 3.00...
A gas is compressed at a constant pressure of 0.800 atm from 10.00 L to 3.00 L. In the process, 400 J of energy leaves the gas by heat. (a) What is the work done on the gas? J (b) What is the change in its internal energy? J
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT