Question

A 275 g sample of nickel at 100.0ºC is placed in 100.0 mL of water at...

A 275 g sample of nickel at 100.0ºC is placed in 100.0 mL of water at 22.0ºC. What is the final temperature of the mixture, assuming no heat is lost to the surroundings? The specific heat capacity of Ni is 0.444 J/(g.ºC). The density of water is 1.00 g/mL and the specific heat capacity of water is 4.18 J/(g.ºC.

Homework Answers

Answer #1

m(H2O) = 100.0 g

T(H2O) = 22.0 oC

C(H2O) = 4.18 J/goC

m(Ni) = 275.0 g

T(Ni) = 100.0 oC

C(Ni) = 0.444 J/goC

Let the final temperature be T oC

use

heat lost by Ni = heat gained by H2O

m(Ni)*C(Ni)*(T(Ni)-T) = m(H2O)*C(H2O)*(T-T(H2O))

275.0*0.444*(100.0-T) = 100.0*4.18*(T-22.0)

122.1*(100.0-T) = 418*(T-22.0)

12210 - 122.1*T = 418*T - 9196

T= 39.6 oC

Answer: 39.6 oC

Please let me know if you have any doubts by commenting on this answer. I reply very fast. Also please mark the answer as helpful, If it helped

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 275-g sample of nickel at 100.0°C is placed in 100.0 mL of water at 22.0°C....
A 275-g sample of nickel at 100.0°C is placed in 100.0 mL of water at 22.0°C. What is the final temperature of the water? Assume that no heat is lost to or gained from the surroundings. Specific heat capacity of nickel = 0.444 J/(g·K). a. 40.8°C b. 61.0°C c. 39.6°C d. 82.4°C e. 79.2°C
15.48 g of nickel sulfate (MM 154.75 g/mol) was dissolved in 100.00 mL of water. The...
15.48 g of nickel sulfate (MM 154.75 g/mol) was dissolved in 100.00 mL of water. The initial temperature was 20.00 oC, and the final temperature was 25.06 oC, The specific heat capacity of the reaction mixture was 4.18J g- oC-. What is the heat transferred, Q? A. 2442 J B. 2115 J C. 327 J D. 418 J I got 327 J, but it gets marked as wrong. Why? 15.48 g of nickel sulfate (MM 154.75 g/mol) was dissolved in...
A 20.0-g sample of ice at 210.08C is mixed with 100.0 g water at 80.08C. Calculate...
A 20.0-g sample of ice at 210.08C is mixed with 100.0 g water at 80.08C. Calculate the final temperature of the mixture assuming no heat loss to the surroundings. The heat capacities of H 2 O(s) and H 2 O(l) are 2.03 and 4.18 J/g ? 8C, respectively, and the enthalpy of fusion for ice is 6.02 kJ/mol.
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0...
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. heat capacity of H2O(s) 37.7 J/(mol*k) heat capacity of H2O(l) 75.3 J/(mol*k) enthalpy of fusion of H2O 6.01 kJ/mol
A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M...
A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. the temperature of each solution before mixing is 22.5°C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with thermometer; the maximum temperature measured is 32.1 C. Assume that the density of the mixed solutions is 1.00 g/ml that...
100.0 mL of 0.800 M aqueous NaOH and 50.00 mL of 0.800 M aqueous H2SO4, each...
100.0 mL of 0.800 M aqueous NaOH and 50.00 mL of 0.800 M aqueous H2SO4, each at 24.0°C, were mixed, see equation: 2NaOH(aq) + H2SO4(aq) → Na2SO4(aq) + 2H2O(l) The final temperature achieved by the solution was 29.3 °C. Neglect the heat capacity of the cup and the thermometer, and assume that the solution of products has a density of exactly 1.00 g/mL and a specific heat capacity of 4.18 J/(g•K).     How much heat was absorbed by the water?
(A) A 36.0 g piece of lead at 130.0 C is placed in 100.0 g of...
(A) A 36.0 g piece of lead at 130.0 C is placed in 100.0 g of water at 20.0 C. What is the temperature (in C) of the water once the system reaches equilibrium? The molar heat capacity of lead is 26.7 J/(mol·K). The specific heat capacity of water is 4.18 J/(g·K). (B) How much energy (in kJ) will it take to heat up 1150 ml of water in a coffee pot from 24 C to 95 C given that...
A piece of iron weighing 20.0 g at a temperature of 95.0ºC was placed in 100.0...
A piece of iron weighing 20.0 g at a temperature of 95.0ºC was placed in 100.0 g of Water at 25.0ºC. Assuming that no heat is lost to the surroundings, what is the resulting temperature of the iron and water?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT