Question

The equilibrium constant describes a ratio between the concentrations of the products and the reactants. If...

The equilibrium constant describes a ratio between the concentrations of the products and the reactants. If the free energy of this equilibrium is -0.212kJ mol-1 K-1 for room temperature, what temperature will be required to force the equilibrium to greater than 95% in favor of the products?

Homework Answers

Answer #1

Ans Delta G = - R T lnKeq

= -2.303 * 8.314 * 298 log Keq

-0.212* 1000 = - 5705.8 logKeq

logKeq = 0.037

Keq = 1.088

At room temperature, ratio of the concentration of product to the concentration of the reactants is almost equal.

For 95 % in favour of the product, Keq = 1.088 * 1.95 = 2.12

delta G = - 2.303 * 8.314 * T log(2.12)

T = 212/ 6.241 = 33.96K

That indicates the forward reaction is exothermic and on lowering the temperature to 33.96K, the equilibrium will be greater than 95% in favor of the products.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the fructose-1,6-bisphosphatase reaction. Calculate the free energy change if the ratio of the concentrations of...
Consider the fructose-1,6-bisphosphatase reaction. Calculate the free energy change if the ratio of the concentrations of the products to the concentrations of the reactants is 21.3, and the temperature is 37.0 °C? ΔG°\' for the reaction is –16.7 kJ/mol. The constant R = 8.3145 J/(mol·K)
Reactants A and B and products C and D are in dynamic equilibrium, with constant concentrations....
Reactants A and B and products C and D are in dynamic equilibrium, with constant concentrations. If you disturb the equilibrium by adding more of product C, then he concentrations after equilibrium that are re-established will be higher for everything compared to the first equilibrium. will be higher for C and lower for everything else compared to the first equilibrium. will be higher for A and B but lower for C and D compared to the first equilibrium. will be...
At equilibrium, the concentrations of reactants and products can be predicted using the equilibrium constant, Kc,...
At equilibrium, the concentrations of reactants and products can be predicted using the equilibrium constant, Kc, which is a mathematical expression based on the chemical equation. For example, in the reaction aA+bB⇌cC+dD where a, b, c, and d are the stoichiometric coefficients, the equilibrium constant is where [A], [B], [C], and [D] are the equilibrium concentrations. If the reaction is not at equilibrium, the quantity can still be calculated, but it is called the reaction quotient, Qc, instead of the...
At equilibrium, the concentrations of reactants and products can be predicted using the equilibrium constant, Kc,...
At equilibrium, the concentrations of reactants and products can be predicted using the equilibrium constant, Kc, which is a mathematical expression based on the chemical equation. For example, in the reaction aA+bB⇌cC+dD where a, b, c, and d are the stoichiometric coefficients, the equilibrium constant is Kc=[C]c[D]d[A]a[B]b where [A], [B], [C], and [D] are the equilibrium concentrations. If the reaction is not at equilibrium, the quantity can still be calculated, but it is called the reaction quotient, Qc, instead of...
For chemical reactions where all reactants and products are in the gas phase the amount of...
For chemical reactions where all reactants and products are in the gas phase the amount of each gas in the vessel can be expressed either as partial pressures or as concentrations. As such the equilibrium constant for a gas phase reaction can also be expressed in terms of concentrations or pressures. For the general reaction, aA(g)+bB(g)⇌cC(g)+dD(g) Kp=(PC)c(PD)d(PA)a(PB)b and Kc=[C]c[D]d[A]a[B]b. It is possible to interconvert between Kp and Kcusing Kp=Kc(RT)Δn where R=0.08314 L bar mol−1 K−1 and Δn is the difference...
Which of the following will permanently change the ratio of products to reactants in an equilibrium...
Which of the following will permanently change the ratio of products to reactants in an equilibrium mixture for a chemical reaction involving gaseous species?(a) increasing the temperature (b) adding a catalyst(c) addition of gaseous reactants(d) answers a and c(e) answers b and c
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. For the reaction 2A(g)+2B(g)⇌C(g) Kc = 71.6...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. A) For the reaction 3A(g)+2B(g)⇌C(g) Kc =...
� Gibbs Free Energy: Equilibrium Constant Nitric oxide, NO, also known as nitrogen monoxide, is one...
� Gibbs Free Energy: Equilibrium Constant Nitric oxide, NO, also known as nitrogen monoxide, is one of the primary contributors to air pollution, acid rain, and the depletion of the ozone layer. The reaction of oxygen and nitrogen to form nitric oxide in an automobile engine is N2(g)+O2(g)?2NO(g) The spontaneity of a reaction can be determined from the free energy change for the reaction, ?G?. A reaction is spontaneous when the free energy change is less than zero. A reaction...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. a For the reaction X(g)+3Y(g)⇌2Z(g) Kp =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT