Question

4. Use the van der Waals gas law to derive a corrected equation for Gibbs free...

4. Use the van der Waals gas law to derive a corrected equation for Gibbs free energy.

Homework Answers

Answer #1

we know thant dG= VdP-SdT

at constan temperature, dT=0

dG= VdP                       (1)

for Vanderwaal gas of n=1 moles

the Equation is (P+a/V2)*(V-b)= RT

P= RT/V-b)- a/V2, dP= (-RT/(V-b)2+ 2a/V3)dV

Hence Eq.1 becomes   dG= V{-RT/(V-b)2+2a/V3)dV

when the equation is integrated

deltaG= V2*RT/(V2-b) -V1*RT/(V1-b) +RT*ln{(V2-b)/(V1-b)} -2a*(1/V2-1/V1)

where V2 and V1 are volumes before and after expansion.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the van der Waals equation and the ideal gas equation to calculate the pressure for...
Use the van der Waals equation and the ideal gas equation to calculate the pressure for 2.00 mol He gas in a 1.00 L container at 300.0 K. 1st attempt Part 1 (5 points) Ideal gas law pressure_____ atm Part 2 (5 points) Van der Waals pressure_____ atm
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted...
Use the ideal gas equation and the Van der Waals equation to calculate the pressure exerted by 1.00 mole of Argon at a volume of 1.31 L at 426 K. The van der Waals parameters a and b for Argon are 1.355 bar*dm6*mol-2 and 0.0320 dm3*mol-1, respectively. Is the attractive or repulsive portion of the potential dominant under these conditions?
Use the van der Waals equation of state to calculate the pressure of 4.00 mol of...
Use the van der Waals equation of state to calculate the pressure of 4.00 mol of Xe at 483 K in a 4.20-L vessel. Van der Waals constants can be found here. Use the ideal gas equation to calculate the pressure under the same conditions.
For a gas obeying the van der Waals equation of state evaluate the difference between the...
For a gas obeying the van der Waals equation of state evaluate the difference between the two specific heats Cp − Cv. Express your result in terms of ?, ? and the van der Waals constants ? and ?.
Use the van der Waals equation of state to calculate the pressure of 2.90 mol of...
Use the van der Waals equation of state to calculate the pressure of 2.90 mol of CH4 at 457 K in a 4.50 L vessel. Van der Waals constants can be found here. P= ________ atm Use the ideal gas equation to calculate the pressure under the same conditions. P= ______ atm
Use the Van der Waals Law Calculator to find the volume of an ideal gas, nitrogen,...
Use the Van der Waals Law Calculator to find the volume of an ideal gas, nitrogen, and oxygen. How close are the values? Do you feel that that treating air (which is 78% nitrogen and 21% oxygen) as an ideal gas is reasonable?
Derive an expression for the isothermal reversible expansion of a van der Waals gas. Account physically...
Derive an expression for the isothermal reversible expansion of a van der Waals gas. Account physically for the way in which the coefficients a and b appear in the expression. Using Maple, plot the expression along with that for an ideal gas. For the van der Waals gas, use a case first where a = 0 and b = 5.11 x 10-2 mol-1 and where a = 4.2 L2 atm mol-2 and b = 0. Take Vi = 1.0 L,...
How is the Van der Waals equation an improvement over the ideal gas equation? How are...
How is the Van der Waals equation an improvement over the ideal gas equation? How are the a and b parameters related to molecular properties of the gas?
Use the van der Waals equation of state to calculate the pressure of 3.20 mol of...
Use the van der Waals equation of state to calculate the pressure of 3.20 mol of H2O at 467 K in a 3.70 L vessel. Use the ideal gas equation to calculate the pressure under the same conditions.
Problem 18.41 For oxygen gas, the van der Waals equation of state achieves its best fit...
Problem 18.41 For oxygen gas, the van der Waals equation of state achieves its best fit for a=0.14N⋅m4/mol2 and b=3.2×10−5m3/mol. Part A Determine the pressure in 1.7 mol of the gas at 9 ∘C if its volume is 0.50 L , calculated using the van der Waals equation. Express your answer using two significant figures. Part B Determine the pressure in 1.7 mol of the gas at 9 ∘C if its volume is 0.50 L , calculated using the ideal...