Question

Consider the following reaction carried out under constant pressure 6HCl(aq) + 2Al(s) → 3H2(g) + 2AlCl3(s)...

Consider the following reaction carried out under constant pressure 6HCl(aq) + 2Al(s) → 3H2(g) + 2AlCl3(s) Δ Hrxn = -4.04×102 kJ Calculate the heat associated with the complete reaction of 4.38×102 g of HCl with 67.0 g of Al. Show all work.

A.-4.85×103 kJ

B.-3.96×102 kJ

C.-8.08×102 kJ

D.-5.01×102 kJ

E.-1.00×103 kJ

Homework Answers

Answer #1

Molar mass of HCl = 1*MM(H) + 1*MM(Cl)

= 1*1.008 + 1*35.45

= 36.458 g/mol

mass of HCl = 438.0 g

we have below equation to be used:

number of mol of HCl,

n = mass of HCl/molar mass of HCl

=(438.0 g)/(36.458 g/mol)

= 12.01 mol

Molar mass of Al = 26.98 g/mol

mass of Al = 67.0 g

we have below equation to be used:

number of mol of Al,

n = mass of Al/molar mass of Al

=(67.0 g)/(26.98 g/mol)

= 2.483 mol

we have the Balanced chemical equation as:

6HCl(aq) + 2Al(s) → 3H2(g) + 2AlCl3(s)

6 mol of HCl reacts with 2 mol of Al

for 12.01 mol of HCl, 4.005 mol of Al is required

But we have 2.483 mol of Al

so, Al is limiting reagent

we will use Al in further calculation

Since delta H is negative, heat is released

when 2 mol of Al reacts, heat released = 404.0 KJ

So,

for 2.483 mol of Al, heat released = 2.483*404.0/2 KJ

= 5.01*10^2 KJ

Answer: - 5.01*10^2 KJ

Answer: D

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Consider the following reaction: 2Al(s) + 6HCl(aq) > 2AlCl3(aq) +3H2(g) A 1.0792-g piece of aluminum...
1. Consider the following reaction: 2Al(s) + 6HCl(aq) > 2AlCl3(aq) +3H2(g) A 1.0792-g piece of aluminum reacted completely in 20.0 s. The rate of formation of hydrogen gas is: A) 6.05 * 10-3 g/s B) 2.00 * 10-3 g/s C) 1.56 * 10-3 g/s D) 3.15 * 10-3 g/s
Aluminum chloride can be formed from its elements: (i) 2Al(s)+3Cl2(g) ⟶ 2AlCl3(s) ΔH°= ? Use the...
Aluminum chloride can be formed from its elements: (i) 2Al(s)+3Cl2(g) ⟶ 2AlCl3(s) ΔH°= ? Use the reactions here to determine the ΔH° for reaction(i): (ii) HCl(g) ⟶ HCl(aq) ΔH(ii) ° =−74.8kJ (iii) H2(g)+Cl2(g) ⟶ 2HCl(g) ΔH(iii) ° =−185kJ (iv) AlCl3(aq) ⟶ AlCl3(s) ΔH(iv) ° =+323kJ/mol (v) 2Al(s)+6HCl(aq) ⟶ 2AlCl3(aq)+3H2(g) ΔH(v) ° =−1049kJ Textbook says answer is −1407 kJ I keep getting -1049 kJ - 555 kJ + 646 kJ = -958 kJ. Please help! Is there a difference when kJ/mol...
When aluminum is placed in concentrated hydrochloric acid, hydrogen gas is produced. 2Al(s) + 6HCl(aq) ----...
When aluminum is placed in concentrated hydrochloric acid, hydrogen gas is produced. 2Al(s) + 6HCl(aq) ---- 2AlCl3 (aq) + 3H2 (g) What volume of H2(g) is produced when 2.00 g of Al(s) reacts at STP?
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)Δ?1=−579.0 kJ HCl(g)⟶HCl(aq) Δ?2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) Δ?3=−1845.0...
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)Δ?1=−579.0 kJ HCl(g)⟶HCl(aq) Δ?2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) Δ?3=−1845.0 kJ MCl3(s)⟶MCl3(aq) Δ?4=−138.0 kJ Use the given information to determine the enthalpy of the reaction 2M(s)+3Cl2(g)⟶2MCl3(s)
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)ΔH1=−819.0 kJ2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)ΔH1=−819.0 kJ HCl(g)⟶HCl(aq)  ΔH2=−74.8 kJHCl(g)⟶HCl(aq)  ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g)...
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)ΔH1=−819.0 kJ2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)ΔH1=−819.0 kJ HCl(g)⟶HCl(aq)  ΔH2=−74.8 kJHCl(g)⟶HCl(aq)  ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) ΔH3=−1845.0 kJH2(g)+Cl2(g)⟶2HCl(g) ΔH3=−1845.0 kJ MCl3(s)⟶MCl3(aq)  ΔH4=−258.0 kJMCl3(s)⟶MCl3(aq)  ΔH4=−258.0 kJ Use the given information to determine the enthalpy of the reaction 2M(s)+3Cl2(g)⟶2MCl3(s)
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)    Δ?1=−840.0 kJ HCl(g)⟶HCl(aq)  Δ?2=−74.8 kJHCl(g)⟶HCl(aq)  ΔH2=−74.8 kJ...
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)    Δ?1=−840.0 kJ HCl(g)⟶HCl(aq)  Δ?2=−74.8 kJHCl(g)⟶HCl(aq)  ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) Δ?3=−1845.0 kJH2(g)+Cl2(g)⟶2HCl(g) ΔH3=−1845.0 kJ MCl3(s)⟶MCl3(aq)  Δ?4=−152.0 kJMCl3(s)⟶MCl3(aq)  ΔH4=−152.0 kJ Use the given information to determine the enthalpy of the reaction 2M(s)+3Cl2(g)⟶2MCl3(s)2M(s)+3Cl2(g)⟶2MCl3(s) Δ?=____kJ
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g) ΔH1=−864.0 kJ HCl(g)⟶HCl(aq) ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g)...
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g) ΔH1=−864.0 kJ HCl(g)⟶HCl(aq) ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) ΔH3=−1845.0 kJ MCl3(s)⟶MCl3(aq) ΔH4=−440.0 kJ Use the given information to determine the enthalpy of the reaction 2M(s)+3Cl2(g)⟶2MCl3(s) ΔH= ? kJ
Calculate Delta G° for the following reaction at 25°C: 3Zn2+(aq) + 2Al (s) = 3Zn (s)...
Calculate Delta G° for the following reaction at 25°C: 3Zn2+(aq) + 2Al (s) = 3Zn (s) + 2Al 3+(aq) Delta G° = ? kJ/mol
Sulfuric acid dissolves aluminum metal according to the following reaction: 2Al(s)+3H2SO4(aq)→Al2(SO4)3(aq)+3H2(g) Suppose you wanted to dissolve...
Sulfuric acid dissolves aluminum metal according to the following reaction: 2Al(s)+3H2SO4(aq)→Al2(SO4)3(aq)+3H2(g) Suppose you wanted to dissolve an aluminum block with a mass of 15.1 g . What minimum mass of H2SO4 would you need? What mass of H2 gas would be produced by the complete reaction of the aluminum block?
Sulfuric acid dissolves aluminum metal according to the following reaction: 2Al(s)+3H2SO4(aq)→Al2(SO4)3(aq)+3H2(g) Suppose you wanted to dissolve...
Sulfuric acid dissolves aluminum metal according to the following reaction: 2Al(s)+3H2SO4(aq)→Al2(SO4)3(aq)+3H2(g) Suppose you wanted to dissolve an aluminum block with a mass of 14.5 g . Part A What minimum mass of H2SO4 would you need? I got 79.1 g, which is correct. Part B What mass of H2 gas would be produced by the complete reaction of the aluminum block? Express your answer in grams.