Solve using both ICE table and approx method
A2B ⇌ 2A +B
Kc=.00145
assume all to be gas
A2B to be .326 Moles
A2B <-------> 2A + B
Kc= [ A]^2 [ B ]/[ A2B] = 0.00145
Initial concentration
[ A2B ] = 0.326M
[ A ] = 0
[ B ] = 0
Change in Concentration
[ A2B ] = - X
[ A ] = +2X
[ B ] = X
Concentration at equilibrium
[ A2B ] = 0.326 - X
[ A ] = 2X
[ B] = X
Kc = (2X)^2 .X/ (0.326 - X )
0.00145 = 4X^3/(0.326 - X)
If we assume 0.326 - X = 0.326
4X^3 = 4.73×10^-4
X^3 = 1.18 × 10^-4
X = 4.90×10^-2
Therefore,
[ A2B ] = 0.326 - 0.0490 = 0.277M
[ A ] = 2×0.0490 = 0.098M
[ B ] = 0.0490M
moles of A2B = 0.277
moles of A = 0.098
moles of B = 0.049
Get Answers For Free
Most questions answered within 1 hours.