Question

Given (dS/dP)T = (1/T)*[(dH/dP)T - V] Show (dS/dP)T = -V/T for an ideal gas Interpret how...

Given (dS/dP)T = (1/T)*[(dH/dP)T - V]

Show (dS/dP)T = -V/T for an ideal gas

Interpret how pressure change impacts how entropy changes.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
prove that ds=Cp*(dv/v)+CV*(dp/p) for an ideal gas and using this result give relation for isentropic change....
prove that ds=Cp*(dv/v)+CV*(dp/p) for an ideal gas and using this result give relation for isentropic change. only answer if you know with clear explanation, otherwise I will rate badly. thanks.
Consider the Ideal Gas Law, which states that PV = nRT, where P is the pressure,...
Consider the Ideal Gas Law, which states that PV = nRT, where P is the pressure, V is the volume, T is the temperature, and n is the number of moles of a gas sample, and R is a constant. (a) Assume a sample of 1 mole of a gas is in a expandable container where temperature and pressure are allowed to vary. Solve this equation for V = f(P,T). (b) Determine ∂V/dP and interpret the result. In particular, describe...
In class we discussed a reversible, isothermal compression of an ideal gas. The initial point (1)...
In class we discussed a reversible, isothermal compression of an ideal gas. The initial point (1) is an ideal gas in equilibrium at pressure 1 (P1), volume 1 (V1) and temperature (T), and the final point (2) is an ideal gas in equilibrium at pressure 2 (P2), volume 2 (V2) and temperature (T), where V2 d) For each differential step, the change in entropy is given by dS=qrev/T =!!!"#! . Since T is constant , this express ion can be...
You are given an ideal monatomic gas of N = 1.00 × 1023 atoms at temperature...
You are given an ideal monatomic gas of N = 1.00 × 1023 atoms at temperature T = 300K, and volumeV = 20 L. Find: (a) The pressure in the gas in Pa. (b) The work done in Joules when the gas is compressed slowly and isothermally to half its volume. (c) The change in internal energy of the gas in Joules during process (b). (d) The heat (in J) absorbed or given up by the gas during process (b)....
1. One mole of an ideal monatomic gas is confined to a rigid container. When heat...
1. One mole of an ideal monatomic gas is confined to a rigid container. When heat is added reversibly to the gas, its temperature changes from 300 K to 350K. (a) How much heat is added? (b) What is the change in entropy of the gas?
Show that the bulk modulus of elasticity for an ideal gas at constant temperature is given...
Show that the bulk modulus of elasticity for an ideal gas at constant temperature is given by Ev = p , where p is the pressure.
A mole of a monatomic ideal gas is taken from an initial pressure p and volume...
A mole of a monatomic ideal gas is taken from an initial pressure p and volume V to a final pressure 3p and volume 3V by two different processes: (I) It expands isothermally until its volume is tripled, and then its pressure is increased at constant volume to the final pressure. (II) It is compressed isothermally until its pressure is tripled, and then its volume is increased at constant pressure to the final volume. Show the path of each process...
(a) Calculate the change in entropy of an ideal gas [for which p = nRT/V] when...
(a) Calculate the change in entropy of an ideal gas [for which p = nRT/V] when its volume is doubled at fixed temperature and number of molecules. (b) Repeat the calculation for a van der Waals gas [ for which p = nRT/(V–nb) – a (n/V)^2 ] (c) Give a physical explanation for the difference between the two.
1 mole methane gas (NOT ideal gas) isothermally expands from initial pressure of 5 bar to...
1 mole methane gas (NOT ideal gas) isothermally expands from initial pressure of 5 bar to 1bar at 50oC. Estimate the ENTROPY change (?S) for the gas using Lee/Kesler generalized correlation tables
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from state A to state B and then returns to state A by another process. The volume of the gas in state B is three times its initial volume. (a) For the process AB, find the work done by the gas and its change in entropy. work = J change in entropy = J/K (b) Find the gas's change in entropy for the process BA....