Question

A sample of 14.0 g manganese, originally at 80 degrees C, is dropped into 49.0 g...

A sample of 14.0 g manganese, originally at 80 degrees C, is dropped into 49.0 g of water at 20 degrees C. The molar heat capacity of Mn is 29.4 J/mol*C. What is the final temperature of the water?

Homework Answers

Answer #1

molar heat capacity of Mn = 29.4 J/mol.oC

molar mass of Mn = 54.94 g/mol

use:

specific heat capacity of Mn = molar heat capacity of Mn / molar mass

= (29.4 J/mol.oC)/(54.94 g/mol)

= 0.535 J/g.oC

Let us denote water by symbol 1 and Manganese by symbol 2

m1 = 49.0 g

T1 = 20.0 oC

C1 = 4.184 J/goC

m2 = 14.0 g

T2 = 80.0 oC

C2 = 0.535 J/goC

T = to be calculated

Let the final temperature be T oC

we have below equation to be used:

heat lost by 2 = heat gained by 1

m2*C2*(T2-T) = m1*C1*(T-T1)

14.0*0.535*(80.0-T) = 49.0*4.184*(T-20.0)

7.49*(80.0-T) = 205.016*(T-20.0)

599.2 - 7.49*T = 205.016*T - 4100.32

T= 22.1 oC

Answer: 22.1 oC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A 74.2-g piece of metal is heated to 89.55 degrees C and dropped into 52.0...
1. A 74.2-g piece of metal is heated to 89.55 degrees C and dropped into 52.0 g of water at 23.22 degrees C in a calorimeter with the heat capacity of 41.0 J/C . The final temperature of the system is 27.60 degrees C. a) Assuming that the metal does not react with water and Cs(H2O) = 4.18 J/g*C , calculate the specific heat capacity of the metal in J/g*C b) Most metals have the same molar heat capacity of...
A 500.0-g sample of an element at 153°C is dropped into an ice-water mixture; 109.5-g of...
A 500.0-g sample of an element at 153°C is dropped into an ice-water mixture; 109.5-g of ice melts and an ice-water mixture remains. Calculate the specific heat of the element from the following data: Specific heat capacity of ice: 2.03 J/g-°C Specific heat capacity of water: 4.18 J/g-°C H2O (s) → H2O (l), ΔHfusion: 6.02 kJ/mol (at 0°C) a) If the molar heat capacity of the metal is 26.31 J/mol-°C, what is the molar mass of the metal, and what...
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to...
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to 82.4 degrees Celsius and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g degrees Celsius) initially at 22.3 degrees Celsius. The final temperature of the water is 24.98 degrees Celsius. Calculate the mass of water in the calorimeter.
1- The molar mass and molar heat capacity of aluminum is 27.0 g/mol and 24.3 J/(mol...
1- The molar mass and molar heat capacity of aluminum is 27.0 g/mol and 24.3 J/(mol K), respectively. If a 27.0-g Al sample, at 300. K, absorbed 168 J of heat, what is its final temperature? 2- The molar mass and molar heat capacity of aluminum is 27.0 g/mol and 24.3 J/(mol K), respectively. If a 27.0-g Al sample, at 300. K, absorbed 152 J of heat, what is its final temperature? 3- 100. g water, at 20 C, and...
A 271 g piece of granite, heated to 606°C in a campfire, is dropped into 1.41...
A 271 g piece of granite, heated to 606°C in a campfire, is dropped into 1.41 L water (d = 1.00 g/mL) at 25.0°C. The molar heat capacity of water is cp,water = 75.3 J/(mol ·°C), and the specific heat of granite is cs,granite = 0.790 J/(g ·°C).
A piece of lead with a mass of 29.3 g was heated to 97.85-degrees C and...
A piece of lead with a mass of 29.3 g was heated to 97.85-degrees C and then dropped into 16.0 g of water at 22.80-degrees C. The final temp was 26.61-degrees C. Calculate the specific heat capacity of lead from these data. (The specific heat capacity of liquid water is 4.184 J/g K).
A 42.14−g sample of water at 87.8°C is added to a sample of water at 25.4°C...
A 42.14−g sample of water at 87.8°C is added to a sample of water at 25.4°C in a constant-pressure calorimeter. If the final temperature of the combined water is 40.1°C and the heat capacity of the calorimeter is 26.3 J/°C, calculate the mass of the water originally in the calorimeter. Enter your answer in scientific notation.
A calorimeter contains 75.0 g of water at an initial temperature of 25.2 °C. 151.28 g...
A calorimeter contains 75.0 g of water at an initial temperature of 25.2 °C. 151.28 g of copper metal at a temperature of 95.5 °C was placed in the calorimeter. The equilibrium temperature was 36.2 °C. The molar heat capacity of water is 75.4 J / mol °C. Determine the molar heat capacity of the copper.
Part A It takes 49.0 J to raise the temperature of an 11.0 g piece of...
Part A It takes 49.0 J to raise the temperature of an 11.0 g piece of unknown metal from 13.0∘C to 24.9 ∘C. What is the specific heat for the metal? Express your answer with the appropriate units. Parts B and C The next two questions pertain to silver. They have nothing to do with unknown metal described in Part A. Part B The molar heat capacity of silver is 25.35 J/mol⋅∘C. How much energy would it take to raise...
A 485.4-g sample of an element at 192°C is dropped into an ice–water mixture; 117.0 g...
A 485.4-g sample of an element at 192°C is dropped into an ice–water mixture; 117.0 g of ice melts and an ice–water mixture remains. Calculate the specific heat of the element. ΔHfusion = 6.02 kJ/mol (for liquid water at 0°C). Specific heat =______ J/g∙°C
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT