Question

A sample of 14.0 g manganese, originally at 80 degrees C, is dropped into 49.0 g...

A sample of 14.0 g manganese, originally at 80 degrees C, is dropped into 49.0 g of water at 20 degrees C. The molar heat capacity of Mn is 29.4 J/mol*C. What is the final temperature of the water?

Homework Answers

Answer #1

molar heat capacity of Mn = 29.4 J/mol.oC

molar mass of Mn = 54.94 g/mol

use:

specific heat capacity of Mn = molar heat capacity of Mn / molar mass

= (29.4 J/mol.oC)/(54.94 g/mol)

= 0.535 J/g.oC

Let us denote water by symbol 1 and Manganese by symbol 2

m1 = 49.0 g

T1 = 20.0 oC

C1 = 4.184 J/goC

m2 = 14.0 g

T2 = 80.0 oC

C2 = 0.535 J/goC

T = to be calculated

Let the final temperature be T oC

we have below equation to be used:

heat lost by 2 = heat gained by 1

m2*C2*(T2-T) = m1*C1*(T-T1)

14.0*0.535*(80.0-T) = 49.0*4.184*(T-20.0)

7.49*(80.0-T) = 205.016*(T-20.0)

599.2 - 7.49*T = 205.016*T - 4100.32

T= 22.1 oC

Answer: 22.1 oC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A 74.2-g piece of metal is heated to 89.55 degrees C and dropped into 52.0...
1. A 74.2-g piece of metal is heated to 89.55 degrees C and dropped into 52.0 g of water at 23.22 degrees C in a calorimeter with the heat capacity of 41.0 J/C . The final temperature of the system is 27.60 degrees C. a) Assuming that the metal does not react with water and Cs(H2O) = 4.18 J/g*C , calculate the specific heat capacity of the metal in J/g*C b) Most metals have the same molar heat capacity of...
A 500.0-g sample of an element at 153°C is dropped into an ice-water mixture; 109.5-g of...
A 500.0-g sample of an element at 153°C is dropped into an ice-water mixture; 109.5-g of ice melts and an ice-water mixture remains. Calculate the specific heat of the element from the following data: Specific heat capacity of ice: 2.03 J/g-°C Specific heat capacity of water: 4.18 J/g-°C H2O (s) → H2O (l), ΔHfusion: 6.02 kJ/mol (at 0°C) a) If the molar heat capacity of the metal is 26.31 J/mol-°C, what is the molar mass of the metal, and what...
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to...
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to 82.4 degrees Celsius and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g degrees Celsius) initially at 22.3 degrees Celsius. The final temperature of the water is 24.98 degrees Celsius. Calculate the mass of water in the calorimeter.
1- The molar mass and molar heat capacity of aluminum is 27.0 g/mol and 24.3 J/(mol...
1- The molar mass and molar heat capacity of aluminum is 27.0 g/mol and 24.3 J/(mol K), respectively. If a 27.0-g Al sample, at 300. K, absorbed 168 J of heat, what is its final temperature? 2- The molar mass and molar heat capacity of aluminum is 27.0 g/mol and 24.3 J/(mol K), respectively. If a 27.0-g Al sample, at 300. K, absorbed 152 J of heat, what is its final temperature? 3- 100. g water, at 20 C, and...
A 271 g piece of granite, heated to 606°C in a campfire, is dropped into 1.41...
A 271 g piece of granite, heated to 606°C in a campfire, is dropped into 1.41 L water (d = 1.00 g/mL) at 25.0°C. The molar heat capacity of water is cp,water = 75.3 J/(mol ·°C), and the specific heat of granite is cs,granite = 0.790 J/(g ·°C).
A piece of lead with a mass of 29.3 g was heated to 97.85-degrees C and...
A piece of lead with a mass of 29.3 g was heated to 97.85-degrees C and then dropped into 16.0 g of water at 22.80-degrees C. The final temp was 26.61-degrees C. Calculate the specific heat capacity of lead from these data. (The specific heat capacity of liquid water is 4.184 J/g K).
A 48.2 g sample of a metal is heated to 95.8 degrees C and placed in...
A 48.2 g sample of a metal is heated to 95.8 degrees C and placed in a coffee-cup calorimeter containing 79.0 g of water at a temperature of 18.5 degrees C. After the metal cools, the final temperature of the metal and water is 22.8 degrees C. Calculate the specific heat capacity of the metal, assuming that no heat escapes to the surroundings or is transferred to the calorimeter.
A 42.14−g sample of water at 87.8°C is added to a sample of water at 25.4°C...
A 42.14−g sample of water at 87.8°C is added to a sample of water at 25.4°C in a constant-pressure calorimeter. If the final temperature of the combined water is 40.1°C and the heat capacity of the calorimeter is 26.3 J/°C, calculate the mass of the water originally in the calorimeter. Enter your answer in scientific notation.
A calorimeter contains 75.0 g of water at an initial temperature of 25.2 °C. 151.28 g...
A calorimeter contains 75.0 g of water at an initial temperature of 25.2 °C. 151.28 g of copper metal at a temperature of 95.5 °C was placed in the calorimeter. The equilibrium temperature was 36.2 °C. The molar heat capacity of water is 75.4 J / mol °C. Determine the molar heat capacity of the copper.
Part A It takes 49.0 J to raise the temperature of an 11.0 g piece of...
Part A It takes 49.0 J to raise the temperature of an 11.0 g piece of unknown metal from 13.0∘C to 24.9 ∘C. What is the specific heat for the metal? Express your answer with the appropriate units. Parts B and C The next two questions pertain to silver. They have nothing to do with unknown metal described in Part A. Part B The molar heat capacity of silver is 25.35 J/mol⋅∘C. How much energy would it take to raise...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT