Question

2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an intital...

2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an intital state T=680 K and P= 1.15 bar to a final state T = 298 K and P = 4.75 bar a) Calculate change in internal energy, change in enthalpy, and change in entropy for this process b) Calculate change in internal energy, change in enthalpy, and change in entropy if this process was reversible.

Homework Answers

Answer #1

n = moles = 2.25 ,R = universal gas constant = 8.314 x 10^-3 kJ/mol K

A)

ΔU = n Cv ΔT

         = 2.25 x (5 R / 2 ) x (680-298)

         = 2.25 x ( 5 x 8.314 x 10^-3 / 2 ) x 382

    ΔU    = 17.86 kJ /mol

B )

ΔH = ΔU + n R ΔT

      = 17.86 + 2.25 x 8.314 x 10^-3 x (680-298)

   ΔH = 25 kJ /mol

C)

Cp - Cv = R

Cp -5R/2 =R

Cp = 7R/2 = 7 x 8.314 / 2 = 29.1 J /K

ΔS = n Cp ln (T2/T1) - n R ln (P2/P1)

     = 2.25 x 29.1 ln (680 / 298) - 2.25 x 8.314 x ln (1.15/4.75)

      = 54.0 + 26.53

     = 80.53 J /mol K

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an initial...
2.25 moles of an ideal gas with Cv,m = 5R/2 are transformed irreversibly from an initial state T = 680 K and P = 1.15 bar to a final state T= 298 and P= 4.75 bar. a) Calculate ΔU, ΔH, and ΔS for this process. b) Calculate ΔU, ΔH, and ΔS for this process was reversible.
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric...
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric expansion at 1 bar and the volume increases from 0.5 L to 1 L. (a) Find the heat per mole, the work per mole done, and the change in the molar internal energy, ΔUm, the molar enthalpy, ΔHm, for this process. b) What are the entropy changes ΔSm of the system and of the surroundings? Is this process spontaneous? Justify your answer.
1) A quantity of n moles of oxygen gas (CV = 5R/2 and Cp = 7R/2)...
1) A quantity of n moles of oxygen gas (CV = 5R/2 and Cp = 7R/2) is at absolute temperature T. You increase the absolute temperature to 2T. Find the change in internal energy of the gas, the heat flow into the gas, and the work done by the gas if the process you used to increase the temperature is isochoric. Express your answers in terms of the variables n, R, and T separated by commas. 2) Find the change...
A 1.65 mol of an ideal gas (Cv=3R/2) at T=14.5 oC and P=0.2 bar undergoes the...
A 1.65 mol of an ideal gas (Cv=3R/2) at T=14.5 oC and P=0.2 bar undergoes the following two step process: first an isothermal expansion against a constant pressure of 0.1 bar until the volume is doubled; followed by a cooling to -35.6 oC at constant volume. Calculate the following thermodynamic quantities for the total process: 1) Work (w) for step 1. 2) Heat (Q) for step 1. 3) Change in internal energy (U) for step 1. 4) Change in enthalpy...
2.85 moles of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list...
2.85 moles of an ideal gas with CV,m=3R/2 undergoes the transformations described in the following list from an initial state described by T = 310. K and P = 1.00 bar. Part A:The gas is heated to 600 K at a constant volume corresponding to the initial volume. Calculate q for this process. Express your answer with the appropriate units. Part B:The gas is heated to 600 K at a constant volume corresponding to the initial volume. Calculate w for...
Calculate the change in entropy for 3 moles of an ideal gas with Cp=(9/2)R and Cv=(7/2)R,...
Calculate the change in entropy for 3 moles of an ideal gas with Cp=(9/2)R and Cv=(7/2)R, undergoing the following quasi-static process. The gas is initially at T=350K, and is being compressed from 4 m3 to 1 m3 in a perfectly insulated container.
a. One mole of an ideal monoatomic gas (closed system, Cv,m) initially at 1 atm and...
a. One mole of an ideal monoatomic gas (closed system, Cv,m) initially at 1 atm and 273.15 K experiences a reversible process in which the volume is doubled. the nature of the process is unspecified, but the following quantities are known, deltaH=2000.0J and q=1600.0J. Calculate the initial volume, the final temperature, the final pressure, deltaU, and w for the process. b. Suppose the above gas was taken from the same initial state to the same final state as in the...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from...
Exactly 1.27 moles of an ideal gas undergoes an isothermal expansion (T = 259 K) from state A to state B and then returns to state A by another process. The volume of the gas in state B is three times its initial volume. (a) For the process AB, find the work done by the gas and its change in entropy. work = J change in entropy = J/K (b) Find the gas's change in entropy for the process BA....
We consider an isolated system made up of 2 moles of an ideal gas which can...
We consider an isolated system made up of 2 moles of an ideal gas which can pass reversibly from a state A (PA, VA, TA = 300 K) to a state B (PB = 3PA, VB = VA / 3, TB) by a transformation which comprises two stages: it is first isochoric (constant volume), then isobaric (constant pressure). 1-Determine the work involved. The ideal gas constant is R = 8.31 J / K.mol, and the internal energy of an ideal...
N moles of this gas undergoes the following cyclical process composed of four reversible steps: i....
N moles of this gas undergoes the following cyclical process composed of four reversible steps: i. Isovolumetric cooling from state 1 (T1 and P1) to State 2 (T2 and P2); ii. Isothermal expansion from state 2 (T2 and P2) to state 3 (T2 and P3); iii. Isovolumetric heating from state 3 (T2 and P3) back to state 4 (T4 and P4); and iv. Adiabatic compression from state 4 (T4 and P4) to state 1 (T1 and P1). We know that...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT