Question

When an electron moves from level n= 4 to level n =5 in an excited hydrogen...

When an electron moves from level n= 4 to level n =5 in an excited hydrogen atom, what amount of energy is required for this electronic transition?

Please show your full work!! Where you got number from step by step

Homework Answers

Answer #1

Here photon will be captured and it will excite the atom

1/wavelength = -R* (1/nf^2 - 1/ni^2)

R is Rydberg constant. R = 1.097*10^7

1/wavelength = - R* (1/nf^2 - 1/ni^2)

1/wavelength = - 1.097*10^7* (1/5^2 - 1/4^2)

wavelength = 4.077*10^-6 m

wavelength = 4077 nm

we have:

wavelength = 4.077*10^-6 m

we have below equation to be used:

Energy = Planck constant*speed of light/wavelength

=(6.626*10^-34 J.s)*(3.0*10^8 m/s)/(4.077*10^-6 m)

= 4.88*10^-20 J

Answer: 4.88*10^-20 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is...
1. The energy of the electron in the lowest level of the hydrogen atom (n=1) is -2.179×10-18 J. What is the energy of the electron in level n=5? -8.716×10-20 J 2.The electron in a hydrogen atom moves from level n=6 to level n=4. a) Is a photon emitted or absorbed? b) What is the wavelength of the photon?
A photon is incident on a hydrogen atom. The photon moves the electron from an n...
A photon is incident on a hydrogen atom. The photon moves the electron from an n = 5 energy level to an n = 10 energy level. A: Is this an absorption or emission process? Choose one. B: What is the wavelength, in nanometers, of the incident photon?
A hydrogen atom transitions from the n = 6 excited state to the n = 3...
A hydrogen atom transitions from the n = 6 excited state to the n = 3 excited state, emitting a photon. a) What is the energy, in electron volts, of the electron in the n = 6 state? How far from the nucleus is the electron? b) What is the energy, in electron volts, of the photon emitted by the hydrogen atom? What is the wavelength of this photon? c) How many different possible photons could the n = 6...
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited...
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited (nf = 6) from the ground state electron configuration. What is the energy change of the electron associated with this transition? b. After some time in the excited state, the electron falls from the n = 6 state back to its ground state. What is the change in energy of the electron associated with this transition? c. When the electron returns from its excited...
Q1) Calculate the energy of an electron in the n = 2 level of a hydrogen...
Q1) Calculate the energy of an electron in the n = 2 level of a hydrogen atom. Energy = _______Joules Q2) What would be the wavelength of radiation emitted from a hydrogen atom when an electron moves from the n = 2 to n = 1energy level? In what region of the spectrum does this radiation lie? Wavelength = ________nm Region = _________(ultraviolet or visible or infrared)
The electron in a hydrogen atom is excited to the n = 6 shell and emits...
The electron in a hydrogen atom is excited to the n = 6 shell and emits electromagnetic radiation when returning to lower energy levels. Determine the number of spectral lines that could appear when this electron returns to the lower energy levels, as well as the wavelength range in nanometers.
Consider the electronic transition from n = 4 to n = 1 in a hydrogen atom,...
Consider the electronic transition from n = 4 to n = 1 in a hydrogen atom, and select the correct statement below: A photon of 97 nm wavelength and 2.05x10-18 J energy was emitted from the hydrogen atom in this electronic transition. A photon of 97 nm wavelength and 2.05x10-18 J energy was absorbed by the hydrogen atom in this electronic transition. A photon of 122 nm wavelength and 1.64x10-18 J energy was emitted from the hydrogen atom in this...
1) An electron in the hydrogen atom drops from the n=5 level to the n=1 level....
1) An electron in the hydrogen atom drops from the n=5 level to the n=1 level. What are the frequency, wavelength, and energy of the emitted photon? In which series does this photon occur? How much energy must be absorbed by the atom in order to kick the electron back up to the fifth level? 2) Calculate the maximum wavelength for the initiation of a photoelectric current in the aluminum (work function W = 4.28 eV).
A. Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes...
A. Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n=2 to an orbital in which n=7. Express the wavelength in nanometers to three significant figures. B. An electron in the n=6 level of the hydrogen atom relaxes to a lower energy level, emitting light of λ=93.8nm. Find the principal level to which the electron relaxed. Express your answer as an integer. Can you explain it in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT