Question

3. What is the wavelength (in nm) and frequency of light that is emitted when an...

3. What is the wavelength (in nm) and frequency of light that is emitted when an electron in a hydrogen atom drops from the n = 5 to the n = 3 energy level

Homework Answers

Answer #1

Apply Rydberg Formula

E = R*(1/nf^2 – 1/ni ^2)

R = -2.178*10^-18 J

Nf = final stage/level

Ni = initial stage/level

E = Energy per unit (i.e. J/photon)

E = (-2.178*10^-18)*(1/3^2 – 1/5 ^2)

E = -1.548*10^-19

For the wavelength:

WL = h c / E

h = Planck Constant = 6.626*10^-34 J s

c = speed of particle (i.e. light) = 3*10^8 m/s

E = energy per particle J/photon

WL = wavelength in meters

WL = (6.626*10^-34)(3*10^8)/(1.548*10^-19)

WL = 0.0000012841

to nanometers:

WL = (0.0000012841)(10^9) = 1284.1 nm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the frequency (Hz) and wavelength (nm) of light emitted when an electron in a Hydrogen...
Determine the frequency (Hz) and wavelength (nm) of light emitted when an electron in a Hydrogen atom makes a transition from an orbital in n=6 to an orbital in n=5
What is the wavelength of light (in m) emitted by a hydrogen atom when an electron...
What is the wavelength of light (in m) emitted by a hydrogen atom when an electron relaxes from the 5 energy level to the 3 energy level?
The best answer for the wavelength of light emitted when an electron transitions from the fourth...
The best answer for the wavelength of light emitted when an electron transitions from the fourth energy level to the first energy level in a hydrogen atom is: a. 97.2 nm b 972 nm c. 9.72 nm d. 9720 nm e. .972 nm
Calculate the wavelength and frequency of light emitted when an electron changes from n=5 to n=2...
Calculate the wavelength and frequency of light emitted when an electron changes from n=5 to n=2 in the H atom. Wavelength = ???m Frequency = ??? s^-1
Calculate the energy of the emitted photon as well as the wavelength and frequency of electromagnetic...
Calculate the energy of the emitted photon as well as the wavelength and frequency of electromagnetic radiation emitted from the hydrogen atom when the electron undergoes the transition from n = 5 to n = 1. In what region of the spectrum does this line occur?
If the wavelength of light emitted when an electron relaxes from n = 3 level is...
If the wavelength of light emitted when an electron relaxes from n = 3 level is 102.6 nm, to what level did the electron relax to?
Energy, Wavelength, Frequency Problem: Show your work neatly and methodically. Consider an electron in the hydrogen...
Energy, Wavelength, Frequency Problem: Show your work neatly and methodically. Consider an electron in the hydrogen atom giving off light which has a wavelength of 625 nm, according to the Balmer Series. a) From what energy level in the hydrogen atom did the electron fall to emit this light? b) What is the frequency of this light? c) What is the energy of this light? 2. a) Use the de Broglie relationship to determine the wavelength of a 85 kg...
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron...
Calculate the wavelength (in nanometers) of a photon emitted by a hydrogen atom when its electron drops from the n = 4 to n = 2 state. Consider the following energy levels of a hypothetical atom: E4 −1.61 × 10−19 J E3 −7.51 × 10−19 J E2 −1.35 × 10−18 J E1 −1.45 × 10−18 J (a) What is the wavelength of the photon needed to excite an electron from E1 to E4? ____ ×10m (b) What is the energy...
Light is emitted from a hydrogen atom as an electron in the atom jump from the...
Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. What is the energy of the emitted photon in eV? (b) What are the frequency and wavelength of the photon? (c) In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.
9) a. Explain what is happening inside an atom when it emits light. 9) b. Explain...
9) a. Explain what is happening inside an atom when it emits light. 9) b. Explain what is happening inside an atom when it absorbs light. 10) An excited hydrogen atom emits light with a frequency of 1.141 x 1014 Hz for its electron to reach the n=4 energy level. In which energy level did the electron begin? Big hint: what is the sign (neg or pos) of the electron’s energy change? (Remember, it says “emits”) Use this sign when...