Question

An experiment was conducted where the concentration of a reactant was measured over time. Time (sec)...

An experiment was conducted where the concentration of a reactant was measured over time.

Time (sec) Concentration (M)
0

0.973

50

0.514

100

0.342

150

0.258

200

0.205

250

0.171

What is the order of the reaction with respect to the reactant?

Homework Answers

Answer #1

If we plot the graph between (1/C) versus time we will get straight line.

For second order reaction we have

(1/C) = (1/C0) + kt

Where C is concentration at time t and C0 is initial concentration of reactant. k is rate constant.

If we plot the graph between concentration values versus time then we will get a straight line with intercept (1/C0) and slope k.

Hence the given reaction is second order reaction.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The data below show the concentration of ABversus time for the following reaction: AB(g)→A(g)+B(g) Time (s)...
The data below show the concentration of ABversus time for the following reaction: AB(g)→A(g)+B(g) Time (s) [AB] (M) 0 0.950 50 0.459 100 0.302 150 0.225 200 0.180 250 0.149 300 0.128 350 0.112 400 0.0994 450 0.0894 500 0.0812 Determine the order of the reaction.
C) The reactant concentration in a first-order reaction was 8.40×10−2 M after 30.0 s and 1.50×10−3...
C) The reactant concentration in a first-order reaction was 8.40×10−2 M after 30.0 s and 1.50×10−3 M after 100 s . What is the rate constant for this reaction? D)The reactant concentration in a second-order reaction was 0.320 M after 250 s and 7.40×10−2 M after 750 s . What is the rate constant for this reaction? Express your answer with the appropriate units. Include an asterisk to indicate a compound unit with mulitplication, for example write a Newton-meter as...
1. If I collected rate and concentration data for reactant Q and a plot of 1/[Q]...
1. If I collected rate and concentration data for reactant Q and a plot of 1/[Q] vs time produces a straight line plot with a slope of 0.363 M-1LaTeX: \cdot ⋅ s-1 What can you say definitively regarding the reaction order with respect to Q? Reaction IS 1st order with respect to Q Reaction IS 0th order with respect to Q Reaction IS 2nd order with respect to Q Reaction is NOT 2nd order with respect to Q 2. Which...
The reaction A→C is first-order in the reactant A and is known to go to completion....
The reaction A→C is first-order in the reactant A and is known to go to completion. The product C is colored and absorbs light strongly at 550 nm, while the reactant and intermediates are colorless. A solution of A was prepared, and the absorbance of C at 550 nm was measured as a function of time. (Note that the absorbance of C is directly proportional to its concentration.) Use the following data to determine the half-life of the reaction: Time...
How are we able to determine the order of a reaction from a data set that...
How are we able to determine the order of a reaction from a data set that provides only concentration values and time? time concentration 0 0.01000 50 0.00887 100 0.00797 150 0.00723 200 0.00662 250 0.00611
TWO MOLECULES OF BUTADINEC4H6 CAN JOIN TO FORM C8H12. C4H6----1/2C8H12 THE FOLLOWING CONCENTRATION VERSUS TIME DATA...
TWO MOLECULES OF BUTADINEC4H6 CAN JOIN TO FORM C8H12. C4H6----1/2C8H12 THE FOLLOWING CONCENTRATION VERSUS TIME DATA WERE COLLECTED AT 500DEGREE C TIME(SEC) [C4H6](mol/Lu*100 TIME(SEC) [C4H6]mol/L*100) 0 ? 195 1.62 41.40 .84 604 1.47 4655 .80 1246 1.29 6210 .68 2180 1.10 8135 .57 A.DETERMINE GRAPHICALY THE ORDER OF REACTION WITH RESPECT TO C4H6,AND WRITE THE RATE LAW. B. WHAT IS THE RATE CONSTANT THE REACTION AS DETERMINED FROM THE GRAPH. C.WHAT IS THE INITIAL CONCENTRATION OF C4H6 (AT SEC) D.WHAT...
The data below show the concentration of N2O5 versus time for the following reaction: N2O5(g)→NO3(g)+NO2(g) Time...
The data below show the concentration of N2O5 versus time for the following reaction: N2O5(g)→NO3(g)+NO2(g) Time (s) [N2O5] (mol L−1) 0 1.000 25 0.822 50 0.677 75 0.557 100 0.458 125 0.377 150 0.310 175 0.255 200 0.210 Determine the order of the reaction.
Learning Goal: To understand how to use integrated rate laws to solve for concentration. A car...
Learning Goal: To understand how to use integrated rate laws to solve for concentration. A car starts at mile marker 145 on a highway and drives at 55 mi/hr in the direction of decreasing marker numbers. What mile marker will the car reach after 2 hours? This problem can easily be solved by calculating how far the car travels and subtracting that distance from the starting marker of 145. 55 mi/hr×2 hr=110 miles traveled milemarker 145−110 miles=milemarker 35 If we...
Constants | Periodic Table Consider the reaction A+2B⇌C whose rate at 25 ∘C was measured using...
Constants | Periodic Table Consider the reaction A+2B⇌C whose rate at 25 ∘C was measured using three different sets of initial concentrations as listed in the following table: Trial [A] (M) [B] (M) Rate (M/s) 1 0.50 0.050 1.5×10−2 2 0.50 0.100 3.0×10−2 3 1.00 0.050 6.0×10−2 Part a Calculate the initial rate for the formation of C at 25 ∘C, if [A]=0.50M and [B]=0.075M. Express your answer to two significant figures and include the appropriate units. View Available Hint(s)...
Rate Law: Iodination of Acetone Experiment X trial   initial [A] initial [B] Rate (M/s) #1    1.00...
Rate Law: Iodination of Acetone Experiment X trial   initial [A] initial [B] Rate (M/s) #1    1.00 x 10-3 0.25 x 10-3 0.26 x 10-9 #2   1.00 x 10-3 0.50 x 10-3 0.52 x 10-9 #3   1.00 x 10-3 1.00 x 10-3 1.04 x 10-9 #4    2.00 x 10-3 1.00 x 10-3 4.16 x 10-9 #5    3.00 x 10-3 1.00 x 10-3 9.36 x 10-9 #6    4.00 x 10-3 1.00 x 10-3 16.64 x 10-9 Determine the rate law and calculate...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT