Question

Select the one equation shown below for which the enthalpy change is a heat of formattion....

Select the one equation shown below for which the enthalpy change is a heat of formattion.

(a) H2 (g) +O2 (g) --->H2O2 (l) (b) H2 (g)+Br2(l)--->2HBr (g) (c) C2H4 (g)+H2(g) --->C2H6(g) (d) O2(g)+2F2(g)--->2OF2(g)

Homework Answers

Answer #1

heat of formation of compound is the amount of heat required to form one mole of a compund from its substituent elements in their respective standard states

1)here H2 and O2 are in their standard states(gases) and form one mole of H2O2.This represents heat of formation of H2O2

2)here H2 and Br2 are in their standard states(gases) but two moles of HBr is formed.This is incorrect

3)This doesnot represent the heat of formation of C2H6 as it is not formed from its respective elements

4)here also 2 moles of OF2 is formed.This is also incorrect

so the correct answer is a

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For which one of the following reactions will the enthalpy change be approximately equal to the...
For which one of the following reactions will the enthalpy change be approximately equal to the internal energy change ? 2 H2(g) + O2(g) → 2 H2O(ℓ) H2O(ℓ) → H2O(g) CaCO3(s) → CaO(s) + CO2(g) H2(g) + Br2(g) → 2 HBr(aq) CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g)
1) Calculate the change in enthalpy (in kJ) for the reaction using the Enthalpy tables in...
1) Calculate the change in enthalpy (in kJ) for the reaction using the Enthalpy tables in the back of your book. CaCO3(s)  CaO(s) + CO2(g) 2) 5. The combustion of ethane, C2H4, is an exothermic reaction. C2H4(g) + 3 O2(g)  2 CO2(g) + 2 H2O(l) ∆H = -1.39 x 103 J Calculate the amount of heat liberated when 4.79 g of C2H4 reacts with excess oxygen.
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the standard heat...
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction...
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction is the conversion of methane to ethylene: 2CH4(g)⟶C2H4(g)+2H2(g) Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l ΔH∘=−3120.8kJ
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance   ΔH∘f (kJ/mol) NO(g)   90.2 O2(g)   0 NO2(g)   33.2 Then the standard heat...
Using the Information below determine the change in enthalpy for the following reaction: 2NO (g) +...
Using the Information below determine the change in enthalpy for the following reaction: 2NO (g) + 5H2 (g)!2NH3 (g) + 2H2O (l) H2 (g) + 1⁄2O2 (g)!H2O (l) ΔH° = -285.8 kJ N2 (g) + O2 (g)!2NO (l) ΔH° = +180.5 kJ 2NH3 (g)!N2 (g) + 3H2 (g)ΔH° = +92.22 kJ a)-197.52 kJ b)-241.7 kJ c)-483.3 kJ d)-659.88 kJ e)-844.3 kJ please show me which equation is first second and thrid and reason why? i may be taking the wrong...
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction...
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction is the conversion of methane to ethylene: 2CH4(g)⟶C2H4(g)+2H2(g) Part A Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l) ΔH∘=−3120.8kJ Express your answer to four significant figures and include the appropriate units.
Using the information below determine the change in enthalpy for the following reaction:             2NO(g) +...
Using the information below determine the change in enthalpy for the following reaction:             2NO(g) + 5 H2(g) → 2NH3(g) + 2H2O(l) H2(g) + ½ O2(g) →   H2O(l)                     ∆H°= -285.8kJ N2(g) + O2(g)   → 2NO(g)                     ∆H°= +180.5 kJ 2NH3(g) → N2(g) + 3H2(g)                    ∆H°= + 92.22 kJ please explain step by step! thanks!
Calculate the standard enthalpy of reaction for 2 C(graphite) + 3 H2(g) C2H6(g) Given the following...
Calculate the standard enthalpy of reaction for 2 C(graphite) + 3 H2(g) C2H6(g) Given the following standard enthalpy of combustion data, ∆H˚comb (C(graphite) = –393.5 kJ·mol–1 H2(g) + ½ O2(g) H2O(l) ∆H˚rxn = –285.8 kJ·mol–1 2 C2H6(g) + 7 O2(g) 4 CO2(g) + 6 H2O(l) ∆H˚rxn = –3119.6 kJ·mol–1 (a) –84.6 kJ·mol–1 (b) 2440.2 kJ·mol–1 (c) –3799.0 kJ·mol–1 (d) –224.5 kJ·mol–1(e) not enough information provided
A.) Express the equilibrium constant for the combustion of ethane in the balanced chemical equation. 2C2H6(g)+7O2(g)⇌4CO2(g)+6H2O(g)...
A.) Express the equilibrium constant for the combustion of ethane in the balanced chemical equation. 2C2H6(g)+7O2(g)⇌4CO2(g)+6H2O(g) K=[C2H6]2[O2]7 / [CO2]4[H2O]6 K=[CO2]4 / [C2H6]2[O2]7 K=K=[CO2]4[H2O]6 / [C2H6]2[O2]7 K=[CO2][H2O] / [C2H6]2[O2] B.)Consider the chemical equation and equilibrium constant at 25∘C: H2(g)+I2(g)⇌2HI(g) , K=6.2×102 Calculate the equilibrium constant for the following reaction at 25∘C: HI(g)⇌12H2(g)+12I2(g) Express the equilibrium constant to two significant figures. C.) Consider the following reaction and corresponding value of Kc: H2(g)+Br2(g)⇌2HBr(g) , Kc=1.9×1019 at 25∘C What is the value of Kp...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT