Question

1. A team of chemists is studying the following equilibrium, which has the given equilibrium constant...

1. A team of chemists is studying the following equilibrium, which has the given equilibrium constant at a certain temperature:

2 CH4(g) ⇄ C2H2(g) + 3H2(g)

Kp = 2. x 10-7

They fill a reaction vessel at this temperature with 11 atm of methane (CH4) gas.  What is the equilibrium pressure of C2H2?

2. Ammonia decomposes to form nitrogen and hydrogen, like this:

2 NH3(g) ⇄ N2(g) + 3 H2(g)

An industrial chemist studying this reaction fills a 25.0 L tank with 2.2 mol of ammonia gas, and when the mixture has come to equilibrium measures the amount of hydrogen gas to be 2.3 mol.

Calculate the concentration equilibrium constant for the decomposition of ammonia at the final temperature of the mixture.

Round your answer to 2 significant digits in decimal form. (for example: 8.9x102 would be written 890; 8.1x10-2 would be written 0.082)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 1: The reaction 2CH4(g)⇌C2H2(g)+3H2(g) has an equilibrium constant of K = 0.154. If 6.25 mol...
Question 1: The reaction 2CH4(g)⇌C2H2(g)+3H2(g) has an equilibrium constant of K = 0.154. If 6.25 mol of CH4, 4.45 mol of C2H2, and 11.55 mol of H2 are added to a reaction vessel with a volume of 6.00 L , what net reaction will occur- answer a, b or c? a) The reaction will proceed to the left to establish equilibrium. b) The reaction will proceed to the right to establish equilibrium. c) No further reaction will occur because the...
1.) The equilibrium constant for the chemical equation N2(g)+3H2(g) <--> 2NH3(g) is Kp = 1.09 at...
1.) The equilibrium constant for the chemical equation N2(g)+3H2(g) <--> 2NH3(g) is Kp = 1.09 at 209 °C. Calculate the value of the Kc for the reaction at 209 °C. 2.) At a certain temperature, 0.3411 mol of N2 and 1.581 mol of H2 are placed in a 1.50-L container. N2(g)+3H2(g) <--> 2NH3(g) At equilibrium, 0.1801 mol of N2 is present. Calculate the equilibrium constant, Kc. 3.) At a certain temperature, the Kp for the decomposition of H2S is 0.748....
You mix an equal number of moles of nitrogen gas and hydrogen gas in a rigid...
You mix an equal number of moles of nitrogen gas and hydrogen gas in a rigid container such that the total pressure is 2.0 atm. The gases react at a constant temperature to form ammonia and the system reaches equilibrium according to the equation: N2(g) +3H2(g) = 2NH3(g) a. At equilibrium, the total pressure is 1.7335 at a given temperature. Determine the value of Kp for this reaction at this temperature.
Sulfur dioxide and oxygen react to form sulfur trioxide during one of the key steps in...
Sulfur dioxide and oxygen react to form sulfur trioxide during one of the key steps in sulfuric acid synthesis. An industrial chemist studying this reaction fills a 1.5 L flask with 0.59 atm of sulfur dioxide gas and 2.9 atm of oxygen gas at 35.0 °C . He then raises the temperature, and when the mixture has come to equilibrium measures the partial pressure of sulfur trioxide gas to be 0.53 atm . Calculate the pressure equilibrium constant for the...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. For the reaction 2A(g)+2B(g)⇌C(g) Kc = 71.6...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. A) For the reaction 3A(g)+2B(g)⇌C(g) Kc =...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms of the concentrations of the gases (in M) or as a function of the partial pressures of the gases (in atmospheres). In the latter case, the equilibrium constant is denoted as Kp to distinguish it from the concentration-based equilibrium constant K. Part A For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.155 at 1635 ∘C . What is Kp for the reaction at this temperature? Express...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms of the concentrations of the gases (in M) or as a function of the partial pressures of the gases (in atmospheres). In the latter case, the equilibrium constant is denoted as Kp to distinguish it from the concentration-based equilibrium constant K.' Part A For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.130 at 1668 ∘C . What is Kp for the reaction at this temperature? Express...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms...
For chemical reactions involving ideal gases, the equilibrium constant K can be expressed either in terms of the concentrations of the gases (in M) or as a function of the partial pressures of the gases (in atmospheres). In the latter case, the equilibrium constant is denoted as Kp to distinguish it from the concentration-based equilibrium constant K. Part A For the reaction 2CH4(g)⇌C2H2(g)+3H2(g) K = 0.165 at 1521 ∘C . What is Kp for the reaction at this temperature? Express...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...
The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. a For the reaction X(g)+3Y(g)⇌2Z(g) Kp =...