Question

Calculate the wavelength and frequency of light emitted when an electron changes from n=5 to n=2...

Calculate the wavelength and frequency of light emitted when an electron changes from n=5 to n=2 in the H atom.

Wavelength = ???m

Frequency = ??? s^-1

Homework Answers

Answer #1

Here photon will be emitted

1/wavelength = R* (1/nf^2 - 1/ni^2)

R is Rydberg constant. R = 1.097*10^7

1/wavelength = R* (1/nf^2 - 1/ni^2)

1/wavelength = 1.097*10^7* (1/2^2 - 1/5^2)

wavelength = 4.341*10^-7 m

wavelength = 434 nm

we have:

wavelength = 4.341*10^-7 m

we have below equation to be used:

frequency = speed of light/wavelength

=(3.0*10^8 m/s)/(4.341*10^-7 m)

= 6.911*10^14 Hz

wavelength = 4.341*10^-7 m

frequency = 6.911*10^14 s-1

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the frequency (Hz) and wavelength (nm) of light emitted when an electron in a Hydrogen...
Determine the frequency (Hz) and wavelength (nm) of light emitted when an electron in a Hydrogen atom makes a transition from an orbital in n=6 to an orbital in n=5
3. What is the wavelength (in nm) and frequency of light that is emitted when an...
3. What is the wavelength (in nm) and frequency of light that is emitted when an electron in a hydrogen atom drops from the n = 5 to the n = 3 energy level
Calculate the wavelength of the photon emitted when an electron makes a transition from n=5 to...
Calculate the wavelength of the photon emitted when an electron makes a transition from n=5 to n=3. You can make use of the following constants: h=6.626×10−34 J⋅s c=2.998×108 m/s 1 m=109 nm
Calculate the wavelength of the photon emitted when an electron makes a transition from n=5 to...
Calculate the wavelength of the photon emitted when an electron makes a transition from n=5 to n=3. You can make use of the following constants: h=6.626×10−34 J⋅s c=2.998×108 m/s 1 m=109 nm
Calculate the energy of the emitted photon as well as the wavelength and frequency of electromagnetic...
Calculate the energy of the emitted photon as well as the wavelength and frequency of electromagnetic radiation emitted from the hydrogen atom when the electron undergoes the transition from n = 5 to n = 1. In what region of the spectrum does this line occur?
What is the wavelength of light (in m) emitted by a hydrogen atom when an electron...
What is the wavelength of light (in m) emitted by a hydrogen atom when an electron relaxes from the 5 energy level to the 3 energy level?
If the wavelength of light emitted when an electron relaxes from n = 3 level is...
If the wavelength of light emitted when an electron relaxes from n = 3 level is 102.6 nm, to what level did the electron relax to?
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a...
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n = 2 to an orbital in which n = 5. Determine the wavelength of light emitted when an electron in a hydrogen atom makes a transition from an orbital in n = 6 to an orbital in n = 5.
Determine the wavelength of light emitted when an electron drops from n=3 to n=2 where E1...
Determine the wavelength of light emitted when an electron drops from n=3 to n=2 where E1 = -10eV, E2 = -5eV, and E3 = -2.5eV
Light is emitted from a hydrogen atom as an electron in the atom jump from the...
Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. What is the energy of the emitted photon in eV? (b) What are the frequency and wavelength of the photon? (c) In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.