Question

An unknown base has a volume of 70 mL and a molarity of 2.00 and a...

An unknown base has a volume of 70 mL and a molarity of 2.00 and a specific heat capacity of 4.184 J/ g °C). The volume of oxalic acid is 80.00mL and a molarity of 1.80 and has a specific heat of 4.184 J/ g °C. The inital temperature was 20°C and the final temperature was 32.72 °C.Determine the ΔH of neutralization for the unknown base and state whether its exothermic or endothermic.

Homework Answers

Answer #1

Sol :-

Number of moles of unkonwn base = Molarity x volume in L

= 2.00 M x 0.070 L

= 0.14 mol

Similarly,

Number of moles of oxalic acid= Molarity x volume in L

= 1.80 M x 0.080 L

= 0.144 mol

Now,

Amount of heat released (q) = Mass of the solution x specific heat capacity x change in temperature

=-(70 g + 80 g) x 4.184 J/ g °C x (32.72 - 20) °C

= -7983.072 J

So,

Enthalpy of neutralization = ΔH0 = q/Moles of limiting reactant

= -7983.072 J / 0.14 mol

= -57021.9 J/mol

= -57.02 KJ/mol

Hence, enthalpy of neutralization = ΔH0 = -57.02 KJ/mol

Because, sign of ΔH0 is negative, therefore this reaction is exothermic reaction.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
0.1 M NaOH(aq) and HCl (aq). Both solutions are assumed to have a specific heat capacity...
0.1 M NaOH(aq) and HCl (aq). Both solutions are assumed to have a specific heat capacity of 4.184 J g-1 °C-1. Calculate the ΔH of neutralization for HCl in this reaction and determine whether it’s exothermic or endothermic.
17. A common laboratory reaction is the neutralization of an acid with a base. When 50.0...
17. A common laboratory reaction is the neutralization of an acid with a base. When 50.0 mL of 0.500 M HCl at 25.0 °C is added to 50.00 mL of 0.500 M NaOH at 25.0 °C in a coffee cup calorimeter, the temperature of the mixture rises to 28.2 °C. What is the enthalpy of reaction per mole of acid? Assume the mixture has a specific heat capacity of 3.89 J/g·° C and a density of 1.09 g/mL while the...
10. In an effort to calculate the heat of neutralization of an acid, a student mixed...
10. In an effort to calculate the heat of neutralization of an acid, a student mixed 50.0 mL of 1.0 M H2SO4 with 100 mL of 1.0 M NaOH in a calorimeter and observes the temperature change. Write the balanced chemical equation for this reaction. If the initial temperature of the acid and base was 20.1 °C and the temperature rose to 23.7 °C after mixing the two, what is the heat of neutralization for H2SO4? Assume that the solutions...
Consider the titration of 30.00 mL of an HCl solution with an unknown molarity. The volume...
Consider the titration of 30.00 mL of an HCl solution with an unknown molarity. The volume of 0.1200 M NaOH required to reach the equivalence point was 42.50 mL. a. Write the balanced chemical equation for the neutralization reaction. b. Calculate the molarity of the acid. c. What is the pH of the HCl solution before any NaOH is added? d. What is the pH of the analysis solution after exactly 42.25 mL of NaOH is added? e. What is...
When 23.8 mL of 0.500 M H2SO4 is added to 23.8 mL of 1.00 M KOH...
When 23.8 mL of 0.500 M H2SO4 is added to 23.8 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50°C, the temperature rises to 30.17°C. Calculate ΔH of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water = 4.184 J/g·°C.) ?: kJ/mol H2O
When 26.5 mL of 0.500 M H2SO4 is added to 26.5 mL of 1.00 M KOH...
When 26.5 mL of 0.500 M H2SO4 is added to 26.5 mL of 1.00 M KOH in a coffee-cup calorimeter at 23.50° C, the temperature rises to 30.17° C. Calculate ΔH of this reaction. (Assume that the total volume is the sum of the individual volumes and that the density and specific heat capacity of the solution are the same as for pure water.) (d for water = 1.00 g/mL; c for water = 4.184 J/g°C). Answer in kJ/molH2O
Andrea has been measuring the enthalpy change associated with reaction between HCl and NaOH in a...
Andrea has been measuring the enthalpy change associated with reaction between HCl and NaOH in a coffee cup calorimeter. Andrea combined 45.57 mL of 1.00 M HCl and 39.1 mL of 1.00 M NaOH in a coffee cup calorimeter (mass of the coffee cups + a stir bar = 15.00 g). If the initial temperature of the acid/base solution was 16.07 oC, and the final observed temperature was 58.46 oC, what is the enthalpy change of the neutralization reaction, in...
PLEASE SHOW COMPLETE AND CLEAR SOLUTION thanks. A 51.6-mL dilute solution of acid at 23.85°C is...
PLEASE SHOW COMPLETE AND CLEAR SOLUTION thanks. A 51.6-mL dilute solution of acid at 23.85°C is mixed with 48.5 mL of a dilute solution of base, also at 23.85°C, in a coffee-cup calorimeter. After the reaction occurs, the temperature of the resulting mixture is 27.25°C. The density of the final solution is 1.03 g/mL. Calculate the amount of heat evolved. Assume the specific heat of the solution is 4.184 J/g•°C. The heat capacity of the calorimeter is 23.9 J/°C.
When 50.00 mL of aqueous HCl was mixed with 50.00 mL of NaOH (in large excess),...
When 50.00 mL of aqueous HCl was mixed with 50.00 mL of NaOH (in large excess), the temperature of the solution increased from 25.00 °C to 30.09 °C. The reaction is NaOH(aq) + HCl(aq) ↔ NaCl(aq) + H2O(aq) -- ΔH = -57.3 kJ What was the molarity of the original HCl solution? Assume the heat capacity of the solution is the same as pure water (4.184 J/g*°C), the density of the solution is 1.00 g/mL and there is no loss...
Part A: A volume of 95.0 mL of H2O is initially at room temperature (22.00 ∘C)....
Part A: A volume of 95.0 mL of H2O is initially at room temperature (22.00 ∘C). A chilled steel rod at 2.00 ∘C is placed in the water. If the final temperature of the system is 21.00  ∘C , what is the mass of the steel bar? Use the following values: specific heat of water = 4.18 J/(g⋅∘C) specific heat of steel = 0.452 J/(g⋅∘C) Part B: The specific heat of water is 4.18 J/(g⋅∘C). Calculate the molar heat capacity of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT