Question

For a hydrogen atom, calculate the wavelength of an emitted photon in the Lyman series that...

For a hydrogen atom, calculate the wavelength of an emitted photon in the Lyman series that results from the transition n = 3 to n = 1. The Rydberg constant is 2.18 x 10^-18 J.

Homework Answers

Answer #1

Apply Rydberg Formula

E = R*(1/nf^2 – 1/ni ^2)

R = -2.178*10^-18 J

Nf = final stage/level

Ni = initial stage/level

E = Energy per unit (i.e. J/photon)

nf = 1; ni = 3

E = (-2.178*10^-18)*(1/1^2 – 1/3 ^2)

E = 1.936*10^-18

For the wavelength:

WL = h c / E

h = Planck Constant = 6.626*10^-34 J s

c = speed of particle (i.e. light) = 3*10^8 m/s

E = energy per particle J/photon

WL = wavelength in meters

WL = (6.626*10^-34)(3*10^8)/(1.936*10^-18)

WL = 1.0267*10^-7 m

to nanometers:

WL = (1.0267*10^-7)(10^9) = 102.67 nm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the electronic transition from n = 4 to n = 1 in a hydrogen atom,...
Consider the electronic transition from n = 4 to n = 1 in a hydrogen atom, and select the correct statement below: A photon of 97 nm wavelength and 2.05x10-18 J energy was emitted from the hydrogen atom in this electronic transition. A photon of 97 nm wavelength and 2.05x10-18 J energy was absorbed by the hydrogen atom in this electronic transition. A photon of 122 nm wavelength and 1.64x10-18 J energy was emitted from the hydrogen atom in this...
a. what is the energy of the emitted photon if an electron in the hydrogen atom...
a. what is the energy of the emitted photon if an electron in the hydrogen atom makes a transition from the n=7 state to the n=2 state? b. Now, Imagine there is a photon with the same wavelength. What is the speed of this photon?
Calculate the energy of the emitted photon as well as the wavelength and frequency of electromagnetic...
Calculate the energy of the emitted photon as well as the wavelength and frequency of electromagnetic radiation emitted from the hydrogen atom when the electron undergoes the transition from n = 5 to n = 1. In what region of the spectrum does this line occur?
1. What is the energy in eV and wavelength in µm of a photon that, when...
1. What is the energy in eV and wavelength in µm of a photon that, when absorbed by a hydrogen atom, could cause a transition from the n= 4 to the n= 8 energy level? a) energy in eV b) wavelength in µm 2. The so-called Lyman-αphoton is the lowest energy photon in the Lyman series of hydrogen and results from an electron transitioning from the n= 2 to the n= 1 energy level. Determine the energy in eV and...
Calculate the shortest wavelength of the electromagnetic radiation emitted by the hydrogen atom in undergoing a...
Calculate the shortest wavelength of the electromagnetic radiation emitted by the hydrogen atom in undergoing a transition from the n = 6 level
7) Calculate the energy of the photon emitted when a hydrogen atom undergoes a spin-flip transition....
7) Calculate the energy of the photon emitted when a hydrogen atom undergoes a spin-flip transition. How many such photons would it take to equal the energy of a single photon of wavelength 656.3 nm emitted by hydrogen (level 3 – level 2 transition)? 8) Suppose you discovered a star made purely of hydrogen and helium. How old do you think it would be? Explain your reasoning.
What is the wavelength of the photon emitted as the electron in the hydrogen atom transitions...
What is the wavelength of the photon emitted as the electron in the hydrogen atom transitions from the 3rd to 2nd level? What is the frequency of the photon and what is the energy carried by the photon? got -6606 A for the first one and I'm not sure if I'm doing it right
Calculate the wavelength (in nm) of a photon emitted during a transition corresponding to the first...
Calculate the wavelength (in nm) of a photon emitted during a transition corresponding to the first line in the Balmer series (nf = 2) of the hydrogen emission spectrum.
A hydrogen atom, initially at rest in the laboratory, emits one photon, with the lowest energy...
A hydrogen atom, initially at rest in the laboratory, emits one photon, with the lowest energy possible, in the Lyman spectral series. a.Which two energy levels are involved in this transition, and what are their energies? b.What is the energy and momentum of the emitted photon? c.What fraction of this energy is carried away by the recoiling atom (Hint: use conservation of momentum).
Which is greater:      The energy of a photon emitted from a hydrogen atom when the electron...
Which is greater:      The energy of a photon emitted from a hydrogen atom when the electron makes a transition from the n = 3 to the n = 1 energy level, or • the kinetic energy of a 2 gram Ping-Pong ball moving with a speed of 1 m per hour?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT