Question

A 26.5-g aluminum block is warmed to 65.2 ∘Cand plunged into an insulated beaker containing 55.2...

A 26.5-g aluminum block is warmed to 65.2 ∘Cand plunged into an insulated beaker containing 55.2 g of water initially at 22.2 ∘C. The aluminum and the water are allowed to come to thermal equilibrium. (Cs,H2O=4.18 J/g⋅∘C, Cs,Al=0.903J/g⋅∘C)​

Assuming that no heat is lost, what is the final temperature of the water and aluminum?​

Homework Answers

Answer #1

Initial temperature of water = 22.2 0C

Initial temperature of aluminium = 65.2 0C

let final temperature of water and aluminium = Tf

The heat absrobed by water = Heat loss by aluminium

Heat absorbed by water = Mass of water X specific heat of water X change in temperature = Qw

Qw = 55.2 X 4.18 X (22.2-Tf)

Heat loss by metal = Mass of aluminium X specific heat of aluminium x change in temperature = QAl

QAl = 26.5 X 0.903 X (65.2 -Tf)

equating the two heat

26.5 X 0.903 X (65.2 -Tf) = 55.2 X 4.18 X (22.2-Tf)

23.93 X (65.2-Tf) = 230.74 X (Tf - 22.2)

1560.24 - 23.93T = -5122.34 + 230.74 Tf

6682.58 = 254.67x Tf

Tf = 26.24 0C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 26.5 −g aluminum block is warmed to 65.4 ∘C and plunged into an insulated beaker...
A 26.5 −g aluminum block is warmed to 65.4 ∘C and plunged into an insulated beaker containing 55.1 g water initially at 22.2 ∘C. The aluminum and the water are allowed to come to thermal equilibrium.
A 27.0 −g aluminum block is warmed to 65.6 ∘C and plunged into an insulated beaker...
A 27.0 −g aluminum block is warmed to 65.6 ∘C and plunged into an insulated beaker containing 55.1 g water initially at 22.4 ∘C. The aluminum and the water are allowed to come to thermal equilibrium. Assuming that no heat is lost, what is the final temperature of the water and aluminum?
A 60.0 g aluminum block, initially at 55.00 °C, is submerged into an unknown mass of...
A 60.0 g aluminum block, initially at 55.00 °C, is submerged into an unknown mass of water at 293.15 K in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 25.00 °C. What is the approximate mass of the water? The specific heat of water is 4.18 J/g . °C. The specific heat of aluminum is 0.897 J/g . °C.
A hot lump of 26.3 g of aluminum at an initial temperature of 67.2 °C is...
A hot lump of 26.3 g of aluminum at an initial temperature of 67.2 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the aluminum and water given that the specific heat of aluminum is 0.903 J/(g·°C)? Assume no heat is lost to surroundings.
A hot lump of 42.6 g of aluminum at an initial temperature of 62.2 °C is...
A hot lump of 42.6 g of aluminum at an initial temperature of 62.2 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the aluminum and water given that the specific heat of aluminum is 0.903 J/(g·°C)? Assume no heat is lost to surroundings. Please show all work
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling at 77 K. A metal block at an initial temperature of 303 K is dropped into the liquid nitrogen. It boils away 15.8 g of nitrogen in reaching thermal equilibrium. The block is then withdrawn from the nitrogen and quickly transferred to a second insulated copper calorimeter vessel of 200 g mass containing 500 g of water at 30.1 degrees celsius. The block coolds...
A 100-gram metal block is initially heated to 100 degrees Celsius. The copper block is then...
A 100-gram metal block is initially heated to 100 degrees Celsius. The copper block is then placed in 200-grams of water at 20 degrees Celsius. The block and the water are allowed to come to thermal equilibrium and reach a temperature of 23.52 degrees Celsius. a.) What is the change in temperature of the block and the water? b.) If the specific heat of water is 4.184 J/g C, what is the heat gained by the water? c.) What is...
A 500-g aluminum container holds 300 g of water. The water and aluminum are initially at...
A 500-g aluminum container holds 300 g of water. The water and aluminum are initially at 40∘C. A 200-g iron block at 0∘C is added to the water. Assume the specific heat of iron is 450 J/kg⋅∘C, the specific heat of water 4180 J/kg⋅∘C and the specific heat of aluminum is 900 J/kg⋅∘C . 1Determine the final equilibrium temperature.    2.Determine the change in thermal energy of the aluminum 3.Determine the change in thermal energy of the water. 4. Determine...
A silver block, initially at 59.3 ∘C, is submerged into 100.0 g of water at 25.3...
A silver block, initially at 59.3 ∘C, is submerged into 100.0 g of water at 25.3 ∘C, in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 26.5 ∘C. What is the mass of the silver block?
A 1.0 × 10^2 g Aluminum block. at 100 ° C it is placed in a...
A 1.0 × 10^2 g Aluminum block. at 100 ° C it is placed in a calorimeter containing 1.0 × 10^2 g of water at 10ºC Suppose there is no heat loss. What is the final temperature of the mixture?