Question

Consider the combustion reaction of propane gas: C3H8(g) + 5O2(g) → 4H2O(g) + 3CO2(g) Predict the...

Consider the combustion reaction of propane gas: C3H8(g) + 5O2(g) → 4H2O(g) + 3CO2(g) Predict the signs (+ positive, - negative, 0 zero, or CBD cannot be determined ), if possible, for the delta Ssystem. Use the symbol to fill the blank.

Homework Answers

Answer #1

hi i will try my best to explain you this

first if all, combustion reactions are generally exothermic.. that is energy is released into the sorroundings. so, it has (-) delta H value.

Now if you can see the reaction

C3H8(g) + 5O2(g) → 4H2O(g) + 3CO2(g) all are in gaseous state. in the reactant side,6 molecules and on the product side 7 molecules are present. The increase in gaseous molecules increases the disorder, and therefore the change in entropy (delta S) is (+) .

delta G = -delta H) - T delta S.

delta G = is also negative

hope this is correct and helps you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
15. Consider the following combustion reaction of propane. 3C3H8 + 5O2 → 3CO2 + 4H2O a)...
15. Consider the following combustion reaction of propane. 3C3H8 + 5O2 → 3CO2 + 4H2O a) What mass of O2 , in g, would be needed to react with 0.421 kg of C3H8? b) What mass of CO2 , in g, would be produced from the combustion of 0.421 kg of C3H8 with excess oxygen?
Consider the balanced equation for the combustion of propane, C3H8 C3H8(g) + 5O2(g)  3CO2(g) +...
Consider the balanced equation for the combustion of propane, C3H8 C3H8(g) + 5O2(g)  3CO2(g) + 4H2O(l) If propane reacts with oxygen as above a. what is the limiting reagent in a mixture containing 5.00 g of C3H8 and 10.0 g of O2? b. what mass of the excess reagent remains after the reaction ? c. what mass of CO2 is formed when 1.00 g of C3H8 reacts completely?
Consider the Combustion of Propane (C3H8)by O2 and H2o.                              C3H8 +5O2 --> 3Co2+ 4H2o D
Consider the Combustion of Propane (C3H8)by O2 and H2o.                              C3H8 +5O2 --> 3Co2+ 4H2o D)    At standard temperature and pressure, what volume of oxygen would be required to burn 100 g of propane? If air is 21 percent oxygen, what volume of air at STP would be required? E) At standard temperature and pressure, what volume of Co2 would be produced when 100g of propane are burned?
C3H8 (l) + 5O2 (g) → 3CO2 (g) + 4H2O (l) A)How much work is done...
C3H8 (l) + 5O2 (g) → 3CO2 (g) + 4H2O (l) A)How much work is done at 1.2 atm and 334 K when 1 mole of propane undergoes combustion? B)How much work is done at 1.2 atm and 310 K when 102 grams of oxygen reacts with excess propane in this combustion reaction.?
Calculate ΔSuniv (in kJ/K mol) for the combustion of propane at 25 °C. C3H8(g) 5O2(g) -->...
Calculate ΔSuniv (in kJ/K mol) for the combustion of propane at 25 °C. C3H8(g) 5O2(g) --> 3CO2(g) 4H2O(g)
#6 The following reaction shows combustion reaction of propane gas at 25 Celsius. C3H8(gas)+5O2(gas)<===> 3CO2(gas)+4H20(liq); deltaH=-2219.97...
#6 The following reaction shows combustion reaction of propane gas at 25 Celsius. C3H8(gas)+5O2(gas)<===> 3CO2(gas)+4H20(liq); deltaH=-2219.97 kJ/mol Initially 1L-chamber contained 2.03M of propane (C3H8), 3.50 M of oxygen (O2) and 0.030M of carbon dioxide (CO2). After equilibrium is reached, the chamber contained 1.53 M of propane (C3H8). a)Using the information given,calculate equlibrium constant (Kc) of thid reaction. b) After equilibrium is reached, if the chamber size is increased to 5L, predict the direction of equilibrium shift. Explian your answer. c)After...
1.     The combustion of methane can be written as: C3H8 + 5O2 == 3CO2 + 4H2O....
1.     The combustion of methane can be written as: C3H8 + 5O2 == 3CO2 + 4H2O. Determine (a) the theoretical combustion air, (b) the excess combustion air at 100% excess rate, and (c) the actual combustion air. Report the amount per lb-mole of C3H8 and per lb of C3H8.
In a typical reaction as below C3H8 + 5O2 = 3CO2 + 4H2O 88 kg (C3H8)...
In a typical reaction as below C3H8 + 5O2 = 3CO2 + 4H2O 88 kg (C3H8) is reacting with 160 moles of O2. Identify the extent of reaction for this?
LP gas burns according to the following exothermic reaction: C3H8(g)+5O2(g)→3CO2(g)+4H2O(g)ΔH∘rxn=−2044kJ What mass of LP gas is...
LP gas burns according to the following exothermic reaction: C3H8(g)+5O2(g)→3CO2(g)+4H2O(g)ΔH∘rxn=−2044kJ What mass of LP gas is necessary to heat 1.5 L of water from room temperature (25.0 ∘C) to boiling (100.0 ∘C)? Assume that during heating, 14% of the heat emitted by the LP gas combustion goes to heat the water. The rest is lost as heat to the surroundings
Liquefied petroleum (LP) gas burns according to the following exothermic reaction: C3H8(g)+5O2(g)→3CO2(g)+4H2O(g)ΔH∘rxn=−2044kJ . Part A What...
Liquefied petroleum (LP) gas burns according to the following exothermic reaction: C3H8(g)+5O2(g)→3CO2(g)+4H2O(g)ΔH∘rxn=−2044kJ . Part A What mass of LP gas is necessary to heat 1.8 L of water from room temperature (25.0 ∘C) to boiling (100.0 ∘C)? Assume that, during heating, 14% of the heat emitted by the LP gas combustion goes to heat the water. The rest is lost as heat to the surroundings. Express your answer using two significant figures.