Question

A solution was made by dissolving 4.00 mg of hemoglobin in water to give a final...

A solution was made by dissolving 4.00 mg of hemoglobin in water to give a final volume of 1.00 mL. The osmotic pressure of this solution was 1.53×10-3 atm at 25.0°C.

1. Calculate the molar mass of hemoglobin, which is a molecular compound and a nonelectrolyte.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A solution of 7.50 mg of a small protein in 5.00 mL aqueous solution has...
1. A solution of 7.50 mg of a small protein in 5.00 mL aqueous solution has an osmotic pressure of 5.05 torr at 23.1 degrees celcius. What is the molar mass of the protein? 2. A 179 mg sample of a nonelectrolyte isolated from throat lozenges was dissolved in enough water to make 10.0 mL of solution at 25 degrees celcius. The osmotic pressure of the resulting solution was 4.81 atm. Calculate the molar mass of the compound.
A dilute aqueous solution of an organic compound soluble in water is formed by dissolving 2.53...
A dilute aqueous solution of an organic compound soluble in water is formed by dissolving 2.53 g of the compound in water to form 0.250 L of solution. The resulting solution has an osmotic pressure of 0.673 atm at 25°C. Assuming that the organic compound is a nonelectrolyte, what is its molar mass?
2. A solution is made by dissolving 2.0 g of an organic compound in ethanol at...
2. A solution is made by dissolving 2.0 g of an organic compound in ethanol at 22 °C. The volume of the resulting solution is 3.2 L and the osmotic pressure of this solution at 22°C is 1.7*10 -2 atm. What is the molar mass of this compound?
What is the osmotic pressure (in atm) of a solution formed by dissolving 25.0 mg of...
What is the osmotic pressure (in atm) of a solution formed by dissolving 25.0 mg of CaCl2, in 250. mL of water at 25C? Please show all work and explanations please!
Calculate the osmotic pressure of a solution containing 19.90  mg of hemoglobin in 13.9  mL of solution at...
Calculate the osmotic pressure of a solution containing 19.90  mg of hemoglobin in 13.9  mL of solution at 19  ∘C . The molar mass of hemoglobin is 6.5×104 g/mol.
Calculate the osmotic pressure of a solution containing 17.05 mg of hemoglobin in 14.1 mL of...
Calculate the osmotic pressure of a solution containing 17.05 mg of hemoglobin in 14.1 mL of solution at 35 ∘C . The molar mass of hemoglobin is 6.5×104 g/mol.
Calculate the osmotic pressure of a solution containing 16.75 mg of hemoglobin in 13.6 mL of...
Calculate the osmotic pressure of a solution containing 16.75 mg of hemoglobin in 13.6 mL of solution at 32 ∘C . The molar mass of hemoglobin is 6.5×104 g/mol.
Calculate the final concentration of calcium nitrate when a solution is made by dissolving 25.0 mL...
Calculate the final concentration of calcium nitrate when a solution is made by dissolving 25.0 mL of a 0.50 M solution of Ca(NO3)2 to a total volume of 125.0 mL.
solution is made by dissolving 20.0 g of magnesium metal in enough water to form magnesium...
solution is made by dissolving 20.0 g of magnesium metal in enough water to form magnesium hydroxide and hydrogen at constant pressure of 785 torr and 25.0 °C according to the following unbalanced chemical reaction: Mg(s) + H2O (l) → Mg(OH)2 (aq) + H2 (g) Compound ∆H°f (kJ/mole) Mg(OH)2 (aq) -924.5 H2O(l) -285.8 H2(g) 0.00 Mg(s) 0.00 Calculate ∆H° of the reaction in kJ/mol Mg. Calculate ∆H° of the reaction in kJ/gram of Mg If the initial volume of the...
A solution was made by dissolving 0.580 g of an unknown monoprotic acid in water, and...
A solution was made by dissolving 0.580 g of an unknown monoprotic acid in water, and diluting the solution to a final volume of 25.00 mL. This solution was then titrated with 0.100 M NaOH. It took 36.80 mL of NaOH to reach the equivalence point, at which point the pH was 10.42. a. Determine the molar mass of the unknown acid. b. Calculate what the pH was after 18.40 mL of NaOH was added during the titration. Hint: the...