Question

a pump is driven by burn methane. find volume of methaneat 27.5degrees, 2.25bar that must be...

a pump is driven by burn methane. find volume of methaneat 27.5degrees, 2.25bar that must be burned ib excess of oxygento produce enough enegy to compress 10e6 L of gas to 3500L at 250bar. assume 40% of energy of combustion is lost as heat

Homework Answers

Answer #1

amount of work to be done by system = pressure *change in volume [since it's a isobaric process]

=250*0.986*(1000000-3500) [since 1 bar = 0.986 atm]

= 246.5*106 atm-lit

=246.5*106*101.325 J =24976.6125*106 J

Methane produces 50.1 Kj of heat energy per gram

Mass of methane required = 24976.6125*106 /50100 = 0.498 *10^6 grams = 498 Kg

as 40% of energy is getting wasted we have to additionally burn 40%

mass of methane required = 498/1-0.4 = 830 Kg

number of moles of methane = 830000/16 =51875 moles

using ideal gas equation,

Volume V = nRT/P = 51875*300.5*8.31446261815324×102/2.25 = 576010 Lit

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the mass of methane that must be burned to provide enough heat to convert 309.0...
Calculate the mass of methane that must be burned to provide enough heat to convert 309.0 g of water at 25.0°C into steam at 106.0°C. (Assume that the H2O produced in the combustion reaction is steam rather than liquid water.)
Calculate the mass of methane that must be burned to provide enough heat to convert 270.0...
Calculate the mass of methane that must be burned to provide enough heat to convert 270.0 g of water at 24.0°C into steam at 116.0°C. (Assume that the H2O produced in the combustion reaction is steam rather than liquid water.)
Calculate the mass of methane that must be burned to provide enough heat to convert 320.0...
Calculate the mass of methane that must be burned to provide enough heat to convert 320.0 g of water at 46.0°C into steam at 122.0°C. (Assume that the H2O produced in the combustion reaction is steam rather than liquid water.)
Calculate the mass of methane that must be burned to provide enough heat to convert 140.0...
Calculate the mass of methane that must be burned to provide enough heat to convert 140.0 g of water at 19.0°C into steam at 115.0°C. (Assume that the H2O produced in the combustion reaction is steam rather than liquid water.)
A particular natural gas consists, in mole percents, of 83.0% CH4 (methane), 11.2% C2H6 (ethane), and...
A particular natural gas consists, in mole percents, of 83.0% CH4 (methane), 11.2% C2H6 (ethane), and 5.80% C3H8 (propane). A 385-L sample of this gas, measured at 25 ∘C and 729 mmHg , is burned in an excess of oxygen gas. How much heat, in kilojoules, is evolved in this combustion reaction? Express your answer with the appropriate units. The table shown here gives the enthalpy of combustion for three different hydrocarbon fuels to produce liquid water and gaseous carbon...
A fuel gas containing 40.00 mole% methane and the balance ethane is burned completely with pure...
A fuel gas containing 40.00 mole% methane and the balance ethane is burned completely with pure oxygen at 25.00°C, and the products are cooled to 25.00°C. A. Suppose the reactor is continuous. Take a basis of calculation of 1.000 mol/s of the fuel gas, assume some value for the percent excess oxygen fed to the reactor (the value you choose will not affect the results), and calculate -Q?(kW), the rate at which heat must be transferred from the reactor if...
8.27 A fuel gas containing 95.0 mole% methane and the balance ethane is burned completely with...
8.27 A fuel gas containing 95.0 mole% methane and the balance ethane is burned completely with 15.0% excess air. The stack gas leaves the furnace at 800.0°C and is cooled to 450.0°C in a waste-heat boiler, a heat exchanger in which heat lost by cooling gases is used to produce steam from liquid water for heating, power generation, or process applications. A. Take as a basis 100.0 mol of the fuel gas fed to the furnace. Calculate the amounts of...
Find the volume of methane measured at 298K and 1.19 atm required to convert 1.41L of...
Find the volume of methane measured at 298K and 1.19 atm required to convert 1.41L of water vapor at 373K. The heat combustion of CH4 is 890.4 kJ/mole and the heat capacity of H2O is 75.2J/mol x K.
A fuel gas containing 15.00 mole% methane and the balance ethane is burned completely with pure...
A fuel gas containing 15.00 mole% methane and the balance ethane is burned completely with pure oxygen at 25.00°C, and the products are cooled to 25.00°C. Suppose the reactor is continuous. Take a basis of calculation of 1.000 mol/s of the fuel gas, assume some value for the percent excess oxygen fed to the reactor (the value you choose will not affect the results), and calculate -Q (kW), the rate at which heat must be transferred from the reactor if...
A fuel gas containing 75.0 mole% methane and the balance ethane is burned completely with 35.0%...
A fuel gas containing 75.0 mole% methane and the balance ethane is burned completely with 35.0% excess air. The stack gas leaves the furnace at 800.0°C and is cooled to 350.0°C in a waste-heat boiler, a heat exchanger in which heat lost by cooling gases is used to produce steam from liquid water for heating, power generation, or process applications. Take as a basis 100.0 mol of the fuel gas fed to the furnace. The amounts of each of the...