Question

Monochromatic light of wavelength 477nm from a distant source passes through a slit that is 2.90

Monochromatic light of wavelength 477nm from a distant source passes through a slit that is 2.90

Homework Answers

Answer #1

Here is what I solved before, please modify the figures as per your question. Please let me know if you have further questions. Ifthis helps then kindly rate 5-stars.

Monochromatic light of wavelength 476nm from a distant source passes through a slit that is 2.70�10?2mm wide. In the resulting diffraction pattern, the intensity at the center of the central maximum (? = 0?) is 1.18�10?4W/m2  

What is the intensity at a point on the screen that corresponds to ?

= 1.20 ?.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Monochromatic light of wavelength 466 nm from a distant source passes through a slit that is...
Monochromatic light of wavelength 466 nm from a distant source passes through a slit that is 0.0330 mm wide. In the resulting diffraction pattern, the intensity at the center of the central maximum (? = 0?) is 1.06×10?4 W/m2 . What is the intensity at a point on the screen that corresponds to ? = 1.20?.
Monochromatic light of wavelength λ = 595 nm from a distant source passes through a slit...
Monochromatic light of wavelength λ = 595 nm from a distant source passes through a slit 0.460 mm wide. The diffraction pattern is observed on a screen 4.00 m from the slit. In terms of the intensity I0 at the peak of the central maximum, what is the intensity of the light at the screen the following distances from the center of the central maximum? a) 1.00mm b) 3.00mm c) 5.00 mm
Monochromatic light of wavelength 477 nm from a distant source passes through a slit that is...
Monochromatic light of wavelength 477 nm from a distant source passes through a slit that is 0.0310 mm wide. In the resulting diffraction pattern, the intensity at the center of the central maximum (θ = 0∘) is 1.28×10−4 W/m2 . What is the intensity at a point on the screen that corresponds to θ = 1.20∘. Express your answer to three significant figures and include the appropriate units.
Monochromatic electromagnetic radiation with wavelength λ from a distant source passes through a slit. The diffraction...
Monochromatic electromagnetic radiation with wavelength λ from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. Part A If the width of the central maximum is 6.00 mm, what is the slit width a if the wavelength is 500 nm (visible light)? a = m SubmitMy AnswersGive Up Incorrect; Try Again; 5 attempts remaining Part B If the width of the central maximum is 6.00 mm, what is the...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is...
1. monochromatic light of wavelength 540 nm from a source passes through a slit that is 0.03mm wide. What is the width of the central bright fringe on the diffraction pattern formed on a screen placed at a distance of 2.00 m away from the slit? 2. Light of wavelength 500 nm is incident on a single slit of width 0.02 mm to produce a diffraction pattern with intensity 4.00×10^-4 W/m^2 at the center of a screen placed far away...
Monochromatic light from a distant source is incident on a slit 0.75 mm wide. On a....
Monochromatic light from a distant source is incident on a slit 0.75 mm wide. On a. Screen 2.00 m away, the distance from the central maximum of the diffraction pattern to the first minimum is measured to be 1.35 mm. Calculate the wavelength of the light.
Monochromatic light from a distant source is incident on a slit 0.750mm wide. On a screen...
Monochromatic light from a distant source is incident on a slit 0.750mm wide. On a screen a screen 2m away, the distance from the central maximum of the diffraction pattern to the first minimum is measured to be 1.35 mm. Calculate the wavelength of the light. (Diagram: 2 right triangles, path difference, angle theta, y, L, a....)
Light from a source of wavelength 475 nm passes through a single slit and falls on...
Light from a source of wavelength 475 nm passes through a single slit and falls on a screen 2.5 m away. If the slit width is 2.00 x 10^-6 m, how many maxima occur, including the central maximum? A student performs Young's double-slit experiment using a slit separation of 21.6 mm. A screen is placed 3.00 m from the centre of the sources such that a point on the fifth nodal line is 37.5 cm from the centre of the...
Monochromatic light with a 462 nm wavelength passes through a 750 μm wide single slit on...
Monochromatic light with a 462 nm wavelength passes through a 750 μm wide single slit on its way to a viewing screen 2.51 m beyond the slit. A converging lens with focal length f = 4.92 m is placed directly behind the slit. Determine the width of the central maximum with the added lens. You may assume the small angle approximation applies.
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls...
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls on a screen 1.60 m away. Find the distance on the screen from the central bright fringe to the third dark fringe above it. ___ cm Monochromatic light passes through two slits separated by a distance of 0.0332 mm. If the angle to the third maximum above the central fringe is 3.21 degrees, what is the wavelength of the light? __ nm
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT