Question

The standard potentials for the reduction of nicotinamide adenine dinucleotide (NAD+) and oxaloacetate (reactants in the...

The standard potentials for the reduction of nicotinamide adenine dinucleotide (NAD+) and oxaloacetate (reactants in the multistep metabolism of glucose) are as follows: E° = –0.330 V E° = –0.166 V n=2 Calculate the equilibrium constant at 298.15 K for the reaction.

Homework Answers

Answer #1

Since reduction potential of oxaloacetate is greater than NAD+ for the given reaction

reducing agent: NAD+

Oxidising agent: Oxaloacetate

E0cell = reduction potential of reduction half - reduction potential of oxidation half

E0cell = E0 of oxaloacetate - E0 of NAD+

E0cell = -0.166 - (-0.330) V = +0.164 V

We know the relation between equilibrium const. ​G0 and E0cell

​G0 = -RTlnK = -2.303 x RT log K

and ​G0 = -nF​E0cell

From above two equations

2.303 x RT x logK = nF​E0cell

or logK = nFE0cell/ (2.303xRT)

substituting the values logK = 2x 96485.33 x 0.164 / (2.303 x 8.314 x 298.15)

log k = 5.54

K = 3.46 x 105

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The step that completes the citric acid cycle is the conversion of malate (M) to oxaloacetate...
The step that completes the citric acid cycle is the conversion of malate (M) to oxaloacetate (OA) by NAD+. The two redox half cells that are coupled for this reaction are oxaloacetate + 2 H+ + 2 e- double arrow malate, ε°’ = -0.166 V and NAD+ + H+ + 2 e- double arrow NADH, ε°’ = -0.320 V. What is the equilibrium constant Keq’ for the conversion of M to OA by NAD+?
Part A Calculate the equilibrium constant at 25 ∘C for the reaction Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s) Standard Reduction Potentials...
Part A Calculate the equilibrium constant at 25 ∘C for the reaction Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s) Standard Reduction Potentials at 25 ∘C Fe2+(aq)+2e−→Fe(s) E∘= −0.45 V Ag+(aq)+e−→Ag(s) E∘= 0.80 V
1. Use standard reduction potentials to calculate the standard free energy change in kJ for the...
1. Use standard reduction potentials to calculate the standard free energy change in kJ for the reaction: 3I2(s) + 2Cr(s) -----> 6I-(aq) + 2Cr3+(aq) Answer: _______ kJ K for this reaction would be greater or less than one. 2. Use standard reduction potentials to calculate the standard free energy change in kJ for the reaction: 2Cu2+(aq) + Sn(s) ----> 2Cu+(aq) + Sn2+(aq) Answer: ______ kJ K for this reaction would be greater or less than one.
Use the half reactions and standard reduction potentials provided below to calculate the ΔGo’ of: lactate...
Use the half reactions and standard reduction potentials provided below to calculate the ΔGo’ of: lactate + NAD+ → Pyruvate + NADH + H+ NAD+ + H+ + 2e- → NADH (Eo’ = -0.320 V) lactate → pyruvate + 2H+ + 2e- (Eo’ = 0.185 V) Answer: 26.10 kJ/mol Please explain steps
3) The corrosion of iron is an electrochemical process that involves the standard reduction potentials given...
3) The corrosion of iron is an electrochemical process that involves the standard reduction potentials given here at 25 °C. Fe2+(aq) + 2e– → Fe(s) E° = –0.44 V O2(g) + 4H+ (aq) + 4e– → 2H2O(l) E° = +1.23 V a. Calculate the voltage for the standard cell based on the corrosion reaction. 2Fe(s) + O2(g) + 4H+ (aq) → 2Fe2+(aq) + 2H2O(l) b. Calculate the voltage if the reaction in Part a occurs at pH = 4.00 but...
Using these standard reduction potentials: Reduction Reaction (1) H2O2 + 2e- --> 2OH- E (under std...
Using these standard reduction potentials: Reduction Reaction (1) H2O2 + 2e- --> 2OH- E (under std conditions) (V) = 1.77 (2) [Co(H2O)6]3+ + e- --> [Co(H2O)6]2+    E (under std conditions) (V) = 1.84 (3) [Co(NH3)6]3+ + e- --> [Co(NH3)6]2+ E (under std conditions) (V) = 0.10 Show that one can prepare an ammine complex from CoCl2 and hydrogen peroxide in the presence of ammonia but not in its abscene. You will need to write two redox reactions, calculate standard...
BACKROUND: E=E∘−(0.0592/n)logQ The reaction quotient has the usual form Q=[products]^x/[reactants]^y A table of standard reduction potentials...
BACKROUND: E=E∘−(0.0592/n)logQ The reaction quotient has the usual form Q=[products]^x/[reactants]^y A table of standard reduction potentials gives the voltage at standard conditions, 1.00 M for all solutions and 1.00 atm for all gases. The Nernst equation allows for the calculation of the cell potential E at other conditions of concentration and pressure. ------------------------------------- For the reaction 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g).  E∘=0.483 V what is the cell potential at 25 ∘C if the concentrations are [Co3+]= 0.592 M , [Co2+]= 0.866 M , and [Cl−]=...
Standard Reduction (Electrode) Potentials at 25 oC Half-Cell Reaction Eo (volts) Standard Reduction (Electrode) Potentials at...
Standard Reduction (Electrode) Potentials at 25 oC Half-Cell Reaction Eo (volts) Standard Reduction (Electrode) Potentials at 25 oC Half-Cell Reaction Eo (volts) F2(g) + 2 e- 2 F-(aq) 2.87 Ce4+(aq) + e- Ce3+(aq) 1.61 MnO4-(aq) + 8 H+(aq) + 5 e- Mn2+(aq) + 4 H2O(l) 1.51 Cl2(g) + 2 e- 2 Cl-(aq) 1.36 Cr2O72-(aq) + 14 H+(aq) + 6 e- 2 Cr3+(aq) + 7 H2O(l) 1.33 O2(g) + 4 H+(aq) + 4 e- 2 H2O(l) 1.229 Br2(l) + 2 e-...
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77...
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77 V Ni2+ (aq) + 2e- (aq) --> Ni(s) E = - 0.26 V Calculate the standard cell potential for the galvanic cell reaction given below and determine weather or not if the reaction is spontaneous under standard conditions. Ni2+ (aq) + 2 Fe2+ (aq) --> 2 Fe3+ (aq) + Ni(s)   SHOW ALL WORK
Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard...
Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard temperature (25 ∘C) for the following reaction: Fe(s)+Ni2+(aq)→Fe2+(aq)+Ni(s) Fe2+(aq)+2e−→Fe(s) −0.45 Ni2+(aq)+2e−→Ni(s) −0.26
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT