Question

An aqueous solution is formed by dissolving 8.00 mol of a non-electrolyte in 1.00 kg of...

An aqueous solution is formed by dissolving 8.00 mol of a non-electrolyte in 1.00 kg of water. If the vapor pressure of pure water is 23.8 mm Hg at 25/C, the vapor pressure of the solution will be:

  1. 19.4 mm Hg

  2. 23.8 mm Hg

  3. 5.5 mm Hg

  4. 26.8 mm Hg

  5. 20.8 mm Hg

Homework Answers

Answer #1

Ans: vapor pressure of the solution = 20.804 mm Hg

Mass of water = 1.0 kg = 1000 g

Molar mass of water = 18 g/mol

No. of moles of water, n1 = 1000/18 = 55.55 mol

No. of moles of non-electrolyte, n2 = 8.0 mol

Mole fraction of water in solution, X1 = n1/(n1+n2) = 55.55/(8.0 + 55.55) = 0.8741

Mole fraction of non-electrolyte in the solution, X2 = n2/(n1+n1) = 8.0/(8.0 + 55.55) = 0.1259

If, Po (23.8 mm Hg) is the vapor pressure of pure water and P is the vapor pressure of solution, then

According to Raoult’s law, P = PoX1 = 23.8 x 0.8741 = 20.804 mm Hg

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is the vapor pressure of the solution that contains 25g of mannose (non-volatile non-electrolyte MW...
What is the vapor pressure of the solution that contains 25g of mannose (non-volatile non-electrolyte MW 180.16 g/mol) and 75g of water (MW 18)? The vapor pressure of pure water is 23.8 torr. I know the answer is 23, but I do not know how to get it.
Determine the vapor pressure of an aqueous ethylene glycol (C2H6O2) solution that is 26.8% C2H6O2 by...
Determine the vapor pressure of an aqueous ethylene glycol (C2H6O2) solution that is 26.8% C2H6O2 by mass. The vapor pressure of pure water at 25 degrees Celsius is 23.8 torr.
A solution is made by dissolving 24.1 g urea (), a nonelectrolyte, in 309 g water....
A solution is made by dissolving 24.1 g urea (), a nonelectrolyte, in 309 g water. (The vapor pressure of pure water is 23.8 torr at 25°C and 71.9 torr at 45°C.) Calculate the vapor pressure of this solution at 25°C. Vapor pressure =  torr Calculate the vapor pressure of this solution at 45°C. Vapor pressure =  torr
A solution is prepared by adding 1.50 mol glucose, which is not volatile, to 3.50 mol...
A solution is prepared by adding 1.50 mol glucose, which is not volatile, to 3.50 mol water. What is the vapor pressure of this solution at 25 C given that the vapor pressure of pure water is 23.8 torr?
A solution was prepared by dissolving 1.000 g of an unknown non-electrolyte in 50.00 g of...
A solution was prepared by dissolving 1.000 g of an unknown non-electrolyte in 50.00 g of CCl4. The freezing point of the solution was found to be -28.4°C. What is the molar mass of this unknown solute? (The freezing point of pure CCl4 is -22.3°C, and Kf for CCl4 is 29.8°C.kg/mol.)
QUESTION 10 A solution is prepared by dissolving 40.0 g of sucrose (C12H22O11, MM = 342...
QUESTION 10 A solution is prepared by dissolving 40.0 g of sucrose (C12H22O11, MM = 342 g/mol) in 250. g of H2O at 298 K. What is the vapor pressure of the solution if the vapor pressure of water at 298 K is 23.76 mm Hg? 0.198 mm Hg 20.5 mm Hg 23.6 mm Hg 28.0 mm Hg
Part A. If 0.680 mol of a nonvolatile nonelectrolyte are dissolved in 3.90 mol of water,...
Part A. If 0.680 mol of a nonvolatile nonelectrolyte are dissolved in 3.90 mol of water, what is the vapor pressure PH2O of the resulting solution? The vapor pressure of pure water is 23.8 torr at 25 ∘C . Part B. A solution is composed of 1.00 mol cyclohexane (P∘cy=97.6 torr) and 2.50 mol acetone (P∘ac=229.5 torr). What is the total vapor pressure Ptotal above this solution?
A dilute aqueous solution of an organic compound soluble in water is formed by dissolving 2.53...
A dilute aqueous solution of an organic compound soluble in water is formed by dissolving 2.53 g of the compound in water to form 0.250 L of solution. The resulting solution has an osmotic pressure of 0.673 atm at 25°C. Assuming that the organic compound is a nonelectrolyte, what is its molar mass?
A 500.0 mL solution of NaNO3 in water has a vapor pressure of 21.445 mm Hg...
A 500.0 mL solution of NaNO3 in water has a vapor pressure of 21.445 mm Hg at 25°C. How many grams of NaNO3 (molar mass = 84.994 g/mol) were added to the water if the vapor pressure of pure water at 25°C is 23.76 mm Hg. Assume the volume of the water (d = 1.000 g/mL) is the same as the volume of the solution.
1) Calculate the mole fraction of benzene and toluene in the vapor in a solution of...
1) Calculate the mole fraction of benzene and toluene in the vapor in a solution of both with Xbenzene = 0.763. (At 25°C, the vapor pressure of benzene is 96.0 mm Hg and 30.3 mm Hg for toluene). 2) Calculate the freezing point of a solution prepared by dissolving 15.0 g of Na2SO4 in 100 g of water. Kf for water is 1.86 °C.kg/mol.