Question

The reaction A(aq) → B(aq) + C(aq) is a first order reaction with respect to A(aq)....

The reaction A(aq) → B(aq) + C(aq) is a first order reaction with respect to A(aq). The half-life of A(aq) is 97.1 s at 25.0oC and its half-life is 64.7 s at 75.0oC. What is its half-life at 50.0oC?

Homework Answers

Answer #1

Constants at home temperature are calculated:

K1 = ln2 / t1 / 2 1 = ln 2 / 97.1 = 7.14E-3

K2 = 0.0107

The activation energy is calculated:

Ln (K2 / K1) = Ea / R * (1 / T1 - 1 / T2)

Ln (0.0107 / 7.14E-3) = Ea / 0.008314 * (1/298 - 1/348)

Cleared Ea = 6.98 kJ / mol

The constant is calculated at 323 K (50 ° C):

ln (K3 / 0.0107) = 6.98 / 0.008314 * (1/348 - 1/323)

K3 = 8.88E-3 is cleared.

The average time is calculated:

t 1/2 = ln 2 / 8.88E-3 = 78.06 s

If you liked the answer, please rate it positively, you would help me a lot, thanks.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 5: The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq)....
Question 5: The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration of A(aq) is reduced from 0.822 M to 0.576 M in 3.16 minutes. What is the half-life, in seconds, of this reaction? Question 6: The reaction A(aq) → B(aq) + C(aq) is a first order reaction with respect to A(aq). The half-life of A(aq) is 93.2 s at 25.0oC and its half-life is 60.9 s at 75.0oC. What is its half-life at...
a) The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The...
a) The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration of A(aq) is reduced from 0.892 M to 0.505 M in 3.05 minutes. What is the half-life, in seconds, of this reaction? b) The reaction A(aq) → 2 B(aq) is a second order reaction with respect to A(aq). Its activation energy is 49.5 kJ/mol. When the concentration of A(aq) is 0.100 M and the temperature is 25.0oC, the rate of reaction is 0.333...
The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration...
The reaction A(aq) → B(aq) is a first order reaction with respect to A(aq). The concentration of A(aq) is reduced from 0.810 M to 0.585 M in 3.24 minutes. What is the half-life, in seconds, of this reaction? The temperature is 25oC.
The reaction A(aq) → 2 B(aq) is a second order reaction with respect to A(aq). Its...
The reaction A(aq) → 2 B(aq) is a second order reaction with respect to A(aq). Its activation energy is 40.1 kJ/mol. When the concentration of A(aq) is 0.100 M and the temperature is 25.0oC, the rate of reaction is 0.333 M/s. What is the rate of reaction when we increase the concentration of A(aq) to 0.251 M and we raise the temperature to 54.3 oC?
Urea decomposes as a first order in respect to urea and as a first order overall...
Urea decomposes as a first order in respect to urea and as a first order overall reaction. The decomposition of urea in a 0.16M HCl occurs according to:     NH2CONH2 (aq)   +   H+ (aq)   +   2 H2O (l)                             2 NH4+ (aq) + HCO3- (aq) When [NH2CONH2] = 0.250 M, the rate at 60.5°C is 8.45 × 10-5 M/s. What is the rate constant? What is the concentration of urea in this solution after 5.00 × 103 sec? What is the...
For a particular first-order reaction, it takes 48 minutes for the concentration of the reactant to...
For a particular first-order reaction, it takes 48 minutes for the concentration of the reactant to decrease to 25% of its initial value. What is the value for rate constant (in s-1) for the reaction? Select one: A. 4.8 × 10-4 s-1 B. 6.0 × 10-3 s-1 C. 1.0 × 10-4 s-1 D. 2.9 × 10-2 s-1 For the first-order reaction, 2 N2O(g) → 2 N2(g) + O2(g), what is the concentration of N2O after 3 half-lives if 0.15 mol...
For the first order decomposition of H2O2(aq), given k = 3.60 x 10-3 s-1 and the...
For the first order decomposition of H2O2(aq), given k = 3.60 x 10-3 s-1 and the initial concentration of [H2O2]o is 0.882 M, determine : (a) the time at which [H2O2]t decreases to 0.600 M; (b) what will be the concentration of [H2O2]t after 225 s and (c) find the half-life of the reaction.
The reaction: A → B + C is known to be second order with respect to...
The reaction: A → B + C is known to be second order with respect to A and to have a rate constant of 0.00255 M-1 s-1 at 285 K. It is also known that ΔGorxn for this reaction is -2.13 kJ. An experiment was run at this temperature where only reactants were present ([A]o = 0.331 M). Calculate ΔGnonstandard after 14.1 seconds has elapsed.
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products) has a rate constant of 4.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A],...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products ) has a rate constant of 5.10×10−3 s−1 at 45 ∘C . How many minutes does it take for the concentration of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT