Question

A 115.0 −mL sample of a solution that is 3.0×10−3 M in AgNO3 is mixed with...

A 115.0 −mL sample of a solution that is 3.0×10−3 M in AgNO3 is mixed with a 230.0 −mL sample of a solution that is 0.10 M in NaCN.

Homework Answers

Answer #1

The reaction:

AgNO3 + NaCN -----------> AgCN + NaNO3

Volume of AgNO3 = 115.0 mL

Molarity of AgNO3 = 3.0x10-3 M

Volume of NaCN = 230.0 mL

Molarity of NaCN = 0.10 M

Number of moles of AgNO3 = 3.0x10-3 M x 115.0 mL = 0.345 mmoles

Number of moles of NaCN = 0.10M x 230.0 mL = 23 mmoles

Limiting reagent = AgNO3

Excess Reagent = NaCN

After the completion of the reaction:

Amount of AgNO3 remaining = Nil

Amount of NaCNremaining = 23-0.345 =22.655 mmoles

Amount of AgCN produced = 0.345 moles

Amount of NaNO3 produced = 0.345 moles

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 115.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with...
A 115.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with a 230.0 −mL sample of a solution that is 0.10 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains? Express your answer using two significant figures.
A 115.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with...
A 115.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with a 230.0 −mL sample of a solution that is 0.14 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 125.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with...
A 125.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with a 230.0 −mL sample of a solution that is 0.12 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 110.0 −mL sample of a solution that is 2.8×10−3 M  in AgNO3  is mixed with a 230.0...
A 110.0 −mL sample of a solution that is 2.8×10−3 M  in AgNO3  is mixed with a 230.0 −mL sample of a solution that is 0.14 M in NaCN. A complex ion forms. Question:   After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 125.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with...
A 125.0 −mL sample of a solution that is 2.9×10−3 M in AgNO3 is mixed with a 225.0 −mL sample of a solution that is 0.12 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with...
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with a 220.0 −mL sample of a solution that is 0.13 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 110.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with...
A 110.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with a 220.0 −mL sample of a solution that is 0.13 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 110.0 −mL sample of a solution that is 2.7×10−3 M in AgNO3 is mixed with...
A 110.0 −mL sample of a solution that is 2.7×10−3 M in AgNO3 is mixed with a 225.0 −mL sample of a solution that is 0.14 M in NaCN. A complex ion forms. After the solution reaches equilibrium, what concentration of Ag+(aq) remains?
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with...
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with a 220.0 −mL sample of a solution that is 0.13 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains? Answer with 2 sig. figures.
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with...
A 130.0 −mL sample of a solution that is 2.6×10−3 M in AgNO3 is mixed with a 220.0 −mL sample of a solution that is 0.13 M in NaCN. After the solution reaches equilibrium, what concentration of Ag+(aq) remains? Answer with 2 sig. figures.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT