Question

10. In an effort to calculate the heat of neutralization of an acid, a student mixed...

10. In an effort to calculate the heat of neutralization of an acid, a student mixed 50.0 mL of 1.0 M H2SO4 with 100 mL of 1.0 M NaOH in a calorimeter and observes the temperature change. Write the balanced chemical equation for this reaction.

If the initial temperature of the acid and base was 20.1 °C and the temperature rose to 23.7 °C after mixing the two, what is the heat of neutralization for H2SO4?

Assume that the solutions have a density of 1.00 mg/mL and a specific heat of 4.184 J/g°C.

Homework Answers

Answer #1

A balanced chemical equation for the neutralization reaction between strong acid H2SO4 and strong base NaOH is:

2NaOH + H2SO4   →   Na2SO4 + 2H₂O

Moles of H2SO4 = 0.050 L H2SO4 1M (mol H2SO4 1L) = 0.050 mol H2SO4

Volume of solution = (50.0 + 100) mL = 150.0 mL

Mass of solution = 150.0 mL soln 1.00g1mL soln = 150.0 g soln

ΔT = T2 – T1 = (23.7 – 20.1) °C = 3.6 °C

The heats involved are:

Heat from neutralization + Heat to warm solution + Heat to warm calorimeter = 0

i.e. q1+q2+q3 = 0

nΔH+mCΔT+CΔT = 0

0.050 mol ΔH + 150.0 g 4.184 J·g⁻¹°C⁻¹ 3.6 °C + 4.184 J·g⁻¹°C⁻¹ 3.6 °C = 0

0.050 mol ΔH + 2259.4 J + 15.1 J = 0

0.050 mol ΔH = - 2274.5 J

ΔH = − 2274.5 J 0.050mol = - 45490 J/mol = - 45.5 kJ/mol

Hence the heat of neutralization for H2SO4 is - 45.5 kJ/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A student determined the heat of neutralization of sulfuric acid mixed with sodium hydroxide solution using...
A student determined the heat of neutralization of sulfuric acid mixed with sodium hydroxide solution using the procedure described in this experiment. 35.0 mL of 1.00 M H2SO4 were added to 70.5 mL of 1.00 M NaOH solution. 1)Calculate the mass of the reaction mixture. Assume that the density of the mixture is 1.03 g/mL. _______g/mL 2)Calculate the number of moles of each reagent that are consumed when the solutions are mixed. Record your responses using decimal notation rather than...
A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M...
A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. the temperature of each solution before mixing is 22.5°C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with thermometer; the maximum temperature measured is 32.1 C. Assume that the density of the mixed solutions is 1.00 g/ml that...
A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M...
A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 21.45 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 30.90 °C. Assume that the density of the mixed solutions is 1.00...
A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M...
A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 21.05 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 32.10 °C. Assume that the density of the mixed solutions is 1.00...
A 96.2 mL sample of 1.00 M NaOH is mixed with 48.1 mL of 1.00 M...
A 96.2 mL sample of 1.00 M NaOH is mixed with 48.1 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 22.25 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 30.90 °C. Assume that the density of the mixed solutions is 1.00...
A 97.2 mL sample of 1.00 M NaOH is mixed with 48.6 mL of 1.00 M...
A 97.2 mL sample of 1.00 M NaOH is mixed with 48.6 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 23.05 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 32.50 °C. Assume that the density of the mixed solutions is 1.00...
A 50.0 mL sample of 0.300 M NaOH is mixed with a 50.0 mL sample of...
A 50.0 mL sample of 0.300 M NaOH is mixed with a 50.0 mL sample of 0.300 M HNO3 in a coffee cup calorimeter. If both solutions were initially at 35.00°C and the temperature of the resulting solution was recorded as 37.00°C, determine the ΔH°rxn (in units of kJ/mol NaOH) for the neutralization reaction between aqueous NaOH and HCl. Assume 1) that no heat is lost to the calorimeter or the surroundings, and 2) that the density and the heat...
A 107.2 mL sample of 1.00 M NaOH is mixed with 53.6 mL of 1.00 M...
A 107.2 mL sample of 1.00 M NaOH is mixed with 53.6 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 22.45 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 32.10 °C. Assume that the density of the mixed solutions is 1.00...
A 50.0-mL sample of a 1.00 M solution of is mixed with 50.0 mL of 2.00...
A 50.0-mL sample of a 1.00 M solution of is mixed with 50.0 mL of 2.00 M KOH in a calorimeter. The temperature of both solutions was 20.3 ∘C before mixing and 26.2 ∘C after mixing. The heat capacity of the calorimeter is 12.1 J/K. From these data calculate ΔH (in kJ/mol) for the process: CuSO4(1M)+2KOH(2M)→Cu(OH)2(s)+K2SO4(0.5M) Assume the specific heat and density of the solution after mixing are the same as those of pure water.
17. A common laboratory reaction is the neutralization of an acid with a base. When 50.0...
17. A common laboratory reaction is the neutralization of an acid with a base. When 50.0 mL of 0.500 M HCl at 25.0 °C is added to 50.00 mL of 0.500 M NaOH at 25.0 °C in a coffee cup calorimeter, the temperature of the mixture rises to 28.2 °C. What is the enthalpy of reaction per mole of acid? Assume the mixture has a specific heat capacity of 3.89 J/g·° C and a density of 1.09 g/mL while the...