Question

A certain second-order reaction (B→products) has a rate constant of 1.60×10−3 M−1⋅s−1 at 27 ∘C and...

A certain second-order reaction (B→products) has a rate constant of 1.60×10−3 M−1⋅s−1 at 27 ∘C and an initial half-life of 296 s . What is the concentration of the reactant B after one half-life?

Homework Answers

Answer #1

Hoping that This Answer Helps You.

Do comment if any Doubt occurs.

Please do Like and Upvote.

Best of Luck.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B : A certain second-order reaction (B→products) has a rate constant of 1.10×10−3M−1⋅s−1 at 27 ∘C and an initial half-life of 278 s . What is the concentration of the reactant B after one half-life?
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. Answer: 6.42 min Part B A certain second-order reaction (B→products) has a rate constant of 1.35×10−3M−1⋅s−1 at 27 ∘Cand an initial half-life of 236 s . What is the concentration of the reactant B after...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products) has a rate constant of 4.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A],...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products ) has a rate constant of 5.10×10−3 s−1 at 45 ∘C . How many minutes does it take for the concentration of the...
A) The rate constant for a certain reaction is k = 2.60×10−3 s−1 . If the...
A) The rate constant for a certain reaction is k = 2.60×10−3 s−1 . If the initial reactant concentration was 0.200 M, what will the concentration be after 16.0 minutes B)A zero-order reaction has a constant rate of 4.20×10−4M/s. If after 60.0 seconds the concentration has dropped to 9.00×10−2M, what was the initial concentration
1.) The rate constant for a certain reaction is k = 3.40×10−3 s−1 . If the...
1.) The rate constant for a certain reaction is k = 3.40×10−3 s−1 . If the initial reactant concentration was 0.550 M, what will the concentration be after 20.0 minutes? 2.)A zero-order reaction has a constant rate of 1.10×10−4 M/s. If after 80.0 seconds the concentration has dropped to 9.00×10−2M, what was the initial concentration?
Part A: The rate constant for a certain reaction is k = 5.00×10−3 s−1 . If...
Part A: The rate constant for a certain reaction is k = 5.00×10−3 s−1 . If the initial reactant concentration was 0.250 M, what will the concentration be after 2.00 minutes? Part B: A zero-order reaction has a constant rate of 3.40×10−4 M/s. If after 80.0 seconds the concentration has dropped to 6.00×10−2 M, what was the initial concentration?
Part A: The rate constant for a certain reaction is k = 6.90×10−3 s−1 . If...
Part A: The rate constant for a certain reaction is k = 6.90×10−3 s−1 . If the initial reactant concentration was 0.700 M, what will the concentration be after 9.00 minutes Part B: A zero-order reaction has a constant rate of 4.90×10−4M/s. If after 45.0 seconds the concentration has dropped to 7.00×10−2M, what was the initial concentration?
Part A: The rate constant for a certain reaction is k = 5.80×10−3 s−1 . If...
Part A: The rate constant for a certain reaction is k = 5.80×10−3 s−1 . If the initial reactant concentration was 0.950 M, what will the concentration be after 5.00 minutes? Part B: A zero-order reaction has a constant rate of 4.40×10−4M/s . If after 75.0 seconds the concentration has dropped to 9.00×10−2M , what was the initial concentration?
The rate constant for a certain reaction is k = 2.00×10−3 s−1 . If the initial...
The rate constant for a certain reaction is k = 2.00×10−3 s−1 . If the initial reactant concentration was 0.400 M, what will the concentration be after 20.0 minutes? Express your answer with the appropriate units. Part B A zero-order reaction has a constant rate of 4.70×10−4 M/s. If after 70.0 seconds the concentration has dropped to 2.00×10−2 M, what was the initial concentration?