Question

Calculate ΔH (in kJ/mol) for the reaction described by the equation. 6 NH3(g) + 5 O3(g)...

Calculate ΔH (in kJ/mol) for the reaction described by the equation.

6 NH3(g) + 5 O3(g) → 6 NO(g) + 9 H2O(l)

Homework Answers

Answer #1

Ans. Following Hess’s law, dH formation of the reaction is given by-

dHrxn = (Sum of dH0f of products) – (sum of dH0f of reactants)

Or, dHrxn = (6 x dH0f of NO + 9 x dH0f of H2O, l) - (6 x dH0f of NH3 + 5 x dH0f of O3)

Or, dHrxn = [6 x 90.4 kJ mol-1 + 9 x (- 285.8 kJ mol-1)] –

[6 x (- 46.2 kJ mol-1) + 5 x 143.0 kJ mol-1]

Or, dHrxn = (542.4 kJ mol-1 – 2572.2 kJ mol-1) – (-261.6 kJ mol-1 + 715.0 kJ mol-1)

Or, dHrxn = -2029.8 kJ mol-1 + 453.4 kJ mol-1

Hence, dHrxn = - 1576.4 kJ mol-1

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report...
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report your answer to two decimal places in standard notation. H2S(g) + 2O2(g) → SO3(g) + H2O(l) H2S (g): -20.60 kJ/mol O2 (g): 0.00 kJ/mol SO3 (g): -395.77 kJ/mol H2O (l): -285.83 kJ/mol 2. Calculate the amount of heat absorbed/released (in kJ) when 22.54 grams of SO3 are produced via the above reaction. Report your answer to two decimal places, and use appropriate signs to...
The chemical reaction: 4 NH3(g) + 5 O2(g) à 4 NO (g) + 6 H2O (g)...
The chemical reaction: 4 NH3(g) + 5 O2(g) à 4 NO (g) + 6 H2O (g) is observed to have a reaction rate of 0.100 mol / (L×s). What is the rate of change for NH3 in this reaction in mol / (L×s)? The answer is -.400 PLEASE EXPLAIN YOUR WORK! Thank you!
Use the ΔH°f and ΔH°rxn information provided to calculate ΔH°f for IF: ΔH°f (kJ/mol) IF7(g) +...
Use the ΔH°f and ΔH°rxn information provided to calculate ΔH°f for IF: ΔH°f (kJ/mol) IF7(g) + I2(g) → IF5(g) + 2 IF(g) ΔH°rxn = -89 kJ IF7(g) -941 IF5(g) -840 Answers: (a) -190 KJ/mol (b) 101 KJ/mol (c) 24 KJ/mol (d) -95 KJ/mol (e) -146 KJ/mol
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g)...
Given the following data: H2(g) + 1/2O2(g) → H2O(l) ΔH° = -286.0 kJ C(s) + O2(g) → CO2(g) ΔH° = -394.0 kJ 2CO2(g) + H2O(l) → C2H2(g) + 5/2O2(g) ΔH° = 1300.0 kJ Calculate ΔH° for the reaction: 2C(s) + H2(g) → C2H2(g)
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g)...
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g) + O2 (g)  → CO2 (g) + H2O (l) (unbalanced) ΔHf C2H6 (g) = -84.7 kJ/mol; S C2H6 (g) = 229.5 J/K⋅mol; ΔHf ∘ CO2 (g) = -393.5 kJ/mol; S CO2 (g) = 213.6 J/K⋅mol; ΔHf H2O (l) = -285.8 kJ/mol; SH2O (l) = 69.9 J/K⋅mol; SO2 (g) = 205.0 J/K⋅mol
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold...
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold below given the following chemical steps and their respective enthalpy changes. Show ALL work! 2 C(s) + H2(g) → C2H2(g) ΔH°rxn = ? 1. C2H2(g) + 5/2 O2(g) → 2CO2 (g) + H2O (l) ΔH°rxn = -1299.6 kJ 2. C(s) + O2(g) → CO2 (g) ΔH°rxn = -393.5 kJ 3. H2(g) + ½ O2(g) → H2O (l) ΔH°rxn = -285.8 kJ
Calculate the standard enthalpy change (ΔH⁰rxn ) for the reaction of TiCl4(g) and H2O(g) to form...
Calculate the standard enthalpy change (ΔH⁰rxn ) for the reaction of TiCl4(g) and H2O(g) to form TiO2(s) and HCl(g) given the standard enthalpies of formation (ΔH⁰f ) shown in the table below. (Include the sign of the value in your answer.)   kJ Compound ΔH⁰f  (kJ/mol) TiCl4(g) −763.2 H2O(g) −241.8 TiO2(s) −944.0 HCl(g) −92.3
Use the ΔH°f and ΔH°rxn information provided to calculate ΔH°f for IF: ΔH°f (kJ/mol) IF7(g) +...
Use the ΔH°f and ΔH°rxn information provided to calculate ΔH°f for IF: ΔH°f (kJ/mol) IF7(g) + I2(g) → IF5(g) + 2 IF(g) ΔH°rxn = -89 kJ IF7(g) -941 IF5(g) -840
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l)...
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l) + O2(g) → HCOOH(l) + H2O(l) ΔH°=-473.0 kJ C(s) + 2H2(g) + 1/2O2(g) → CH3OH(l) ΔH°=-238.0 kJ H2(g) + 1/2O2(g) → H2O(l) ΔH°=-286.0 kJ calculate ΔH° for the reaction: HCOOH(l) + CH3OH(l) → CH3OCHO(l) + H2O(l)
Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g) +436 O2(g)⟶2O(g) +495 H2+12O2(g)⟶H2O(g) −242 Part A...
Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g) +436 O2(g)⟶2O(g) +495 H2+12O2(g)⟶H2O(g) −242 Part A Devise a way to calculate ΔH for the reaction H2O(g)⟶2H(g)+O(g)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT