Question

Part C 15.0 moles of gas are in a 3.00 L tank at 23.1 ∘C ....

Part C

15.0 moles of gas are in a 3.00 L tank at 23.1 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.

Express your answer with the appropriate units.

Hints

pressure difference =

Homework Answers

Answer #1

n = 15 mol

V = 3 L

T = 23.1C = 23.1+273 =296.1 K

find:

dP when --> methane is used

a)

IDEAL GAS LAW

PV = nRT

P = nRT/V

P = (15)(0.082)(296.1 )/(3)

P = 121.401 atm of methane (ideal gas law)

b)

for Wan deer Waals:

(P +a/v^2) * (v-b) = RT

where v = V/n

v = 3/15 = 0.2

solve for P.

(P +a/v^2) * (v-b) = RT

(P + 2.3/(0.2^2)) * (0.2-0.043) = 0.082*296.1

P = 0.082*296.1 / (0.2-0.043) - 2.3/(0.2^2)

P = 97.15 atm of methane, for vdw

c)

The pressure difference = 121.401 -97.15 = 24.251 atm difference deviation

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
15.0 moles of gas are in a 5.00 L tank at 23.1 ∘C . Calculate the...
15.0 moles of gas are in a 5.00 L tank at 23.1 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2and b=0.0430 L/mol. Express your answer with the appropriate units.
15.0 moles of gas are in a 4.00 L tank at 21.2 ∘C . Calculate the...
15.0 moles of gas are in a 4.00 L tank at 21.2 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.
15.0 moles of gas are in a 4.00 L tank at 20.1 ∘C . Calculate the...
15.0 moles of gas are in a 4.00 L tank at 20.1 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.
12.0 moles of gas are in a 5.00 L tank at 20.5 ∘C . Calculate the...
12.0 moles of gas are in a 5.00 L tank at 20.5 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol. Express your answer with the appropriate units.
Part C 13.0 moles of gas are in a 5.00 L tank at 22.5 ∘C ....
Part C 13.0 moles of gas are in a 5.00 L tank at 22.5 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol. Express your answer with the appropriate units. pressure difference = Please enter pressure difference with Value and units.
12.0 moles of gas are in a 4.00 L tank at 24.4 ∘C . Calculate the...
12.0 moles of gas are in a 4.00 L tank at 24.4 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.
12.0 moles of gas are in a 4.00 L tank at 21.6 ∘C . Calculate the...
12.0 moles of gas are in a 4.00 L tank at 21.6 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.
14.0 moles of gas are in a 8.00 L tank at 21.0 ∘C . Calculate the...
14.0 moles of gas are in a 8.00 L tank at 21.0 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.
1. Part A A 3.00-L flask is filled with gaseous ammonia, NH3. The gas pressure measured...
1. Part A A 3.00-L flask is filled with gaseous ammonia, NH3. The gas pressure measured at 24.0 ∘C is 1.75 atm . Assuming ideal gas behavior, how many grams of ammonia are in the flask? Express your answer to three significant figures and include the appropriate units. 2. Part B If 1.00 mol of argon is placed in a 0.500-L container at 30.0 ∘C , what is the difference between the ideal pressure (as predicted by the ideal gas...
If 1.00 mol of argon is placed in a 0.500-L container at 30.0 ∘C , what...
If 1.00 mol of argon is placed in a 0.500-L container at 30.0 ∘C , what is the difference between the ideal pressure (as predicted by the ideal gas law) and the real pressure (as predicted by the van der Waals equation)? For argon, a=1.345(L2⋅atm)/mol2 and b=0.03219L/mol.