Question

2XY2(g) + Y2(g) -> 2XY3(g) (delta)Hf(kj/mol) S(J/K*mol) XY2(g) -296.3 262.3 Y2(g) 0 205.4 XY3(g) -403.4 275.2...

2XY2(g) + Y2(g) -> 2XY3(g)

(delta)Hf(kj/mol) S(J/K*mol)

XY2(g) -296.3 262.3

Y2(g) 0 205.4

XY3(g) -403.4 275.2

Determine the value of the equilibrium constant at 25*C.

Homework Answers

Answer #1

DH0rxn = 2*DH0f,XY3 - (1*DH0f,Y2 + 2*DH0f,XY2)

        = (2*-403.4)-(1*0+2*-296.3)

        = -214.2 kj

DS0rxn = 2*S0f,XY3 - (1*S0f,Y2 + 2*S0f,XY2)

         = (2*275.2)-(1*205.4 + 2*262.3)

         = -179.6 j/mol.k

dg0 = DH0rxn - TDS0rxn

   T = 298 k

dG0 = (-214.2*10^3)-(298*-179.6)

      = -160.68 kj

dG0 = - RTlnK

-160680 = -8.314*298lnk

equilibrium constant (K) = 1.46*10^28

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9...
HgO(s) Hg(g) O2(g) Enthaply Delta H kj/mol -90.8 61.3 Entropy Delta S   j/mol. K 70.3 174.9 205.0 Above is a table of thermodynamics date for the chemical species in the reaction: 2HgO(s) ----> 2Hg(g)+ O2(g) at 25 C A) Calculate the molar entropy of reaction at 25 C B) Calculate the standard Gibbs free enregy of the reaction at 25 C given that the enthaply of reaction at 25 C is 304.2 Kj/mol C)Calculate the equilibrium constant for the reaction...
Consider the following data for compound A: (delta)Hf(kj/mol) S(J/K*mol) A(s) -224.57 32.36 A(l) -172.45 109.55 Use...
Consider the following data for compound A: (delta)Hf(kj/mol) S(J/K*mol) A(s) -224.57 32.36 A(l) -172.45 109.55 Use these data to determine the normal freezing point of compound A. Report your answer to 3 significant figures and degrees Celsius) Freezing point =
For the reaction I2(s)--->2I(g), delta Ho=+213.6 kJ and delta So=+245.2 J/K. (a) Calculate delta Go. Is...
For the reaction I2(s)--->2I(g), delta Ho=+213.6 kJ and delta So=+245.2 J/K. (a) Calculate delta Go. Is the reaction spontaneous at this temp? Is the reaction spontaneous at this temp? (b) Calculate delta G at 250o C. is the reaction spontaneous at this temp? (c) At what Celcius temp will this reaction be spontaneous? (d) Calculate the thermodynamic equilibrium constant for this reaction at 25oC. Will this be Kp or Kc ? (e) If this reaction occurred in a closed vessel...
Consider the following data at 298 K: Compound ∆Hf° (kJ mol−1) H2S (g) -20.5 H2O (g)...
Consider the following data at 298 K: Compound ∆Hf° (kJ mol−1) H2S (g) -20.5 H2O (g) -242 For the reaction   4 Ag(s) + 2 H2S(g) + O2(g) --> 2 Ag2S(s) + 2 H2O(g)    at a temperature of 25 °C, ∆H° = −507 kJ Calculate the ∆Hf° of Ag2S (s) is (in kJ mol−1): -285.5 -32 -64 + 475
The value of delta G for the conversion 3-phosphoglycerate to 2-phosphoglycerate(2PG) is +4.40 kJ/mol. If the...
The value of delta G for the conversion 3-phosphoglycerate to 2-phosphoglycerate(2PG) is +4.40 kJ/mol. If the concentration of 3-phosphoglycerate at equilibrium is 1.85mM, what is the concentration of 2-phosphoglycerate? assume a tempof 25.0 C. The consant R= 8.3145 J/(mol*K)
For the following reaction dHorxn= 63.11 kJ/mol and dSorxn= 148 J/mol K. BaCl2H2O(s) <---> BaCl2(s) +...
For the following reaction dHorxn= 63.11 kJ/mol and dSorxn= 148 J/mol K. BaCl2H2O(s) <---> BaCl2(s) + H2O(g) a) Write out the equilibrium constant for the reaction and use it to calculate the vapor pressure of the gaseous water (PH2O) avoe the BaCl2 H2O at 298K. b) Assuming dHorxn and dSorxn are temperature independent estimate the temperature at which the quilibrium constant (and the PH2O) = 1bar.
Calculate delta G at 82 C for reactions in which a. delta H = 293 kj...
Calculate delta G at 82 C for reactions in which a. delta H = 293 kj delta S = -695 J/K b. delta H = -1137 kJ; delta S = 0.496 kJ/K c. delta H = -86.6 kJ; delta S = -382 J/K
For a particular reaction, delta H is 67.6 kJ/mol and delta S is 126.9 J/(molk). Assuming...
For a particular reaction, delta H is 67.6 kJ/mol and delta S is 126.9 J/(molk). Assuming these values change very little with temperature, over what temperature range is the reaction spontaneous in the forward direction? The reaction is spontaneous for temperatures less than? Greater than? T= ???? K
Find the temperature (in K) above which a reaction with a delta H of 123.0 kJ/mol...
Find the temperature (in K) above which a reaction with a delta H of 123.0 kJ/mol and a delta S of 90.0 J/K×mol becomes spontaneous. Use four significant figures. T=________K
Given the following information: Li(s) → Li(g) enthalpy of sublimation of Li(s) = 166 kJ/mol HF(g)...
Given the following information: Li(s) → Li(g) enthalpy of sublimation of Li(s) = 166 kJ/mol HF(g) → H(g) + F(g) bond energy of HF = 565 kJ/mol Li(g) → Li+(g) + e– ionization energy of Li(g) = 520. kJ/mol F(g) + e– → F–(g) electron affinity of F(g) = -328 kJ/mol Li+(g) + F–(g) → LiF(s) lattice energy of LiF(s) = -1047 kJ/mol H2(g) → 2H(g) bond energy of H2 = 432 kJ/mol Calculate the change in enthalpy for: 2Li(s)...